Learning

We would like to be able to create a something that can classify each object in a set of objects as, for example, a car (+1) or not a car (−1).

We can create a learning device that trains on a sample of the entire set of objects, with each object in the sample being labeled with the correct classification.

Let’s represent an object as a vector of values: \(a = (x_1, x_2, ..., x_n) \). With this, we can try to learn a linear classifier:

\[
\Sigma = x_1 w_1 + x_2 w_2 + ... + x_n w_n,
\]

and \(b \) is the threshold value of the classifier. If \(\Sigma > b \), the classifier outputs (+1), if \(\Sigma < b \), it outputs (−1).

Training the classifier:
- We would like to be able to use the classifier to actually classify objects
- So we’ll train the classifier on a set of \(m \) examples: \((a_1, a_2, ..., a_m) \)
- Each \(a_y \) has an associated value \(l_y \), that is either (+1) or (−1).
- We want to find weights \(w = (w_1, w_2, ..., w_n) \) such that \(w \cdot a_y < b \) if \(l_y = -1 \), and \(w \cdot a_y > b \) if \(l_y = +1 \)
- This is possible if the set is linearly separable, like the set of examples below:
- This is not always possible though:

![Diagram](image)

- However we may be able to take the data into higher dimensions where it is linearly separable (e.g. use \(x_1x_2\)) using kernels, but this is for another time.

To phrase our goal in another way, let \(\hat{a}_i = < a_i, -1 >\), and let \(\hat{w} = < w, b >\). (We scale \(\hat{a}_i\) so that \(|\hat{a}_i| \leq 1\)). With this, we want \((\hat{w} \cdot \hat{a}_i)l_i > 0\) for all \(i\).

How can we find these weights \(\hat{w}\)? We could use linear programming, but there is a faster way:

- The idea is to start looking at the patterns that are the samples and their classifications \((a_i, l_i)\).
- If the weights cause a mismatch for the pattern, add the pattern to the weights
- Now the weights are closer to matching the given pattern (an error in a positive classification for some vector \((a_y)\) will increase the weights in \(w\) for the variables that are more significant in \(a_y\))

Now we can write out the algorithm:

- Set \(b\) to 0, and scale all \(a_i\) so that \(|a_i| \leq 1\)
- Set \(w = a_1l_1\) (Must be correct for \(a_i\) because \(a_1l_1 \cdot a_1l_1 > 0\)).
- While \(w \cdot a_il_i \neq 0\) for all \(i\), iterate through \(i\)
 - If \(w \cdot a_il_i < 0\), add \(a_il_i\) to \(w\)

We can show that the above algorithm will find a solution if the data is linearly separable. First let’s define the margin of a linear classifier, \(\delta\), as the distance of the closest sample point to the line. So, over all \(i\)

\[
\delta = \frac{\min(wa_il_i)}{|w|}
\]

Note that we divide by \(|w|\) in order to prevent the scaling of \(w\) from affecting the margin.

Theorem

Suppose there exists some \(w^*\) with margin \(\delta > 0\). Then the algorithm finds some solution \(w\) within \(\frac{1}{\sqrt{\delta^2}} - 1\) updates of \(w\).

Proof

- Assume that \(|w^*| = 1\) (Scaling does not make a difference)
- Examine the cosine of the angle between \(w\) as found by the algorithm, and \(w^*\):

\[
cos = \frac{w \cdot w^*}{|w|}
\]

- We can show that the two values converge
- First of all, \cos never increases beyond 1.
- We can show that $\cos \to 1$:
 - How much does the numerator grow with each update?
 - At each update, the new value for the numerator is, for some i
 \[
 (w + a_i l_i)(w^*) = ww^* + w^* a_i l_i
 \]
 - Since we assumed that w^* classified correctly with a margin of δ, $w^* a_i l_i \geq \delta$
 - So the numerator increases by this amount on each update, which is at least δ
 - How much does the denominator grow with each update?
 - New magnitude of w:
 \[
 |w + a_i l_i|^2 = |w|^2 + 2w a_i l_i + (a_i l_i)^2
 \]
 - Since a_i was misclassified, $2w a_i l_i$ must be less than 0.
 - Since a_i was normalized, $(a_i l_i)^2 \leq 1$
 - At most:
 \[
 |w + a_i l_i|^2 = |w|^2 + 1
 \]
 - So the most the denominator can increase on any update is 1
 - After t updates:
 - $|w \cdot w^*| \geq (t + 1)\delta$
 - $|w|^2 \leq (t + 1) \Rightarrow |w| \leq \sqrt{(t + 1)}$
 - We then have:
 \[
 \cos \geq \frac{(t + 1)\delta}{\sqrt{(t + 1)}}
 \]
 - When is
 \[
 \frac{(t + 1)\delta}{\sqrt{(t + 1)}} \leq 1
 \]
 - Solve this out
 \[
 (t + 1)^2 \delta^2 \leq (t + 1)
 \]
 \[
 (t + 1)\delta^2 \leq 1
 \]
 \[
 t\delta^2 \leq 1 - \delta^2
 \]
 \[
 t \leq \frac{1 - \delta^2}{\delta^2} = \frac{1}{\delta^2} - 1
 \]