homework question

sphere, pick arbitrary point, make n north pole and get \(n \) to \(n \) distance

- pick 10 north poles, pick set of points
- show that all points are \(\pm 1 \) to all north poles

for homework, increase number of sphere

Phase transitions

\(G(n,p) \)

- store as property is monotone, there's a phase transition for
- \(p \) such that less than \(p \) doesn't have property and greater than \(p \) does have property
- when does graph have diameter 2 \(P = \sqrt{\frac{\log n}{n}} \)
- \(\frac{1}{2} < \frac{p}{\log n} \) such that \(\lim_{n \to \infty} \mathbb{P}(R(0) = 0) = 0 \)
- then \(G(n,p,\log n) \) doesn't have property
- \(\lim_{n \to \infty} \frac{2n}{\log n} = \infty \) then \(G(n,p,\log n) \) has property
- \(p(\log n) \) is threshold and there's phase transition

- often we have a random variable \(X \) that indicates how many copies of some item \(G(n,p) \) has.
- if \(X \) cycles, \(\lim_{n \to \infty} E(X) = 0 \) \(\Rightarrow \) \(\text{prob(graph has item)} = 0 \)

<table>
<thead>
<tr>
<th>(n) graph</th>
<th>(n) cycles</th>
<th>(0 %)</th>
<th>(10 %)</th>
<th>(20 %)</th>
<th>(40 %)</th>
<th>(60 %)</th>
<th>(80 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E(X) = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second moment method is used to show that when the expected value of a non-negative random variable is large compared to its variance then (random variable takes on value \(0 \) with probability 0)

\(\text{prob}(X = 0) \leq \text{prob}(1 \cdot (X - E(X)) = E(X)) \)

by chernoff's inequality \((\log (2X - E(X)) \leq \frac{X}{2}) \)

\(\text{prob}(X = 0) \leq \text{prob}(1 \cdot (X - E(X)) = E(X)) \leq \frac{e^{-\frac{1}{2}}}{E(X)} \)

\(E(X) = \alpha - \frac{\alpha}{\epsilon^2} \)

can claim \(\alpha \) \(\Rightarrow \) \(\text{prob(graph has item)} > 0 \) if \(\lim \frac{\epsilon^2}{\alpha} = 0 \)
\[E(x) = 0 \]

\[E(x) = \begin{cases} \infty & \text{if } n/\sqrt{\log n} \to 0 \\ 0 & \text{otherwise} \end{cases} \]

\[\lim_{n \to \infty} \frac{E(x)}{\sqrt{\log n}} = 0 \]

Proof: If \(n \) has diameter \(d \), then \(d \) vertices \(w \) and \(v \) are adjacent. Since \(w \) and \(v \) distinguish it from \(\emptyset \),

\[\begin{align*}
E(x) &= \left(\sum_{i \leq n/\sqrt{\log n}} \right) \left(\sum_{j \leq n/\sqrt{\log n}} \right) \\
&= \sum_{i \leq n/\sqrt{\log n}} \sum_{j \leq n/\sqrt{\log n}} \\
&= n^2 \left(\frac{1}{\log n} \right)^2 \\
&= \frac{n^2}{\log^2 n} \\
&\to 0 \quad \text{as } n \to \infty
\end{align*} \]

Threshold for diameter \(d \): \[p = \sqrt{\frac{n}{\log n}} \]

For \(c < \sqrt{\frac{1}{\log n}} \), \(G(n, p) \) almost surely has diameter less than or equal to 2.