Increasing property: Q is an increasing property of a random graph G if when $p_1 < p_2$, $G(n, p_2)$ almost surely has Q if $G(n, p_1)$ almost surely has Q. i.e., if we increase the probability of an edge, the property Q becomes more likely.

Theorem: Every increasing property of $N(n, p)$ has a threshold. (The combinatorial structure does not actually matter.)

Proof: To show that $p(n)$ is a threshold for property Q, we need to show that the probability of property Q goes from 0 to 1 within a range that is bounded by a multiplicative constant.

We have to show that functions $p(\epsilon)$ and $p(1 - \epsilon)$ are asymptotically equivalent. That is, we need to show that there exists as constant m such that $p(1 - \epsilon) \leq mp(\epsilon)$.

Notational note: Let $p(n, \epsilon)$ be the function $p(n)$ such that the probability of Q is ϵ. We will also sometimes write N_p for $N(n, p)$.

Start of Proof

Let $0 < \epsilon < \frac{1}{2}$ and let m be an integer such that $(1 - \epsilon)^m \leq \epsilon$. We now show that $p(1 - \epsilon) \leq mp(\epsilon)$.

Take a number of independent copies of $N_p(\epsilon)$ and union them together. Consider the union of m independent copies of $N_p(\epsilon)$. The union is equivalent to $N(n, q(\epsilon))$, where:

$$q(\epsilon) = 1 - (1 - p(\epsilon))^m \leq mp(\epsilon)$$

Here, $1 - p(\epsilon)$ is the probability of not picking an integer in the original set, and $(1 - p(\epsilon))^m$ is the probability of not picking an integer in any one of the sets.

Now we have that:

$$Prob(N_{mp(\epsilon)} \in Q) \geq Prob(N_{q(\epsilon)} \in Q) \tag{1}$$

If N_q does not have Q, then none of $N_{p(\epsilon)}$ have property Q. That is,

$$Prob(N_{q(\epsilon)} \notin Q) = Prob(\forall N_{p(\epsilon)}, N_{p(\epsilon)} \notin Q)$$

$$= (1 - Prob(N_{p(\epsilon)} \in Q))^m$$

$$= (1 - \epsilon)^m \leq \epsilon$$

We also know that the probability that $N_{q(\epsilon)}$ has property Q is:

$$Prob(N_{q(\epsilon)} \in Q) \geq 1 - \epsilon \tag{2}$$
Combining Eqns. 1 and 2, we get:

\[\text{Prob}(N_{mp(e)} \in Q) \geq 1 - \epsilon \]

We must now argue that \(mp(e) \geq p(1 - \epsilon) \). \(p(1 - \epsilon) \) is the value of \(p(n) \) such that \(N_{p(n)} \) has \(Q \) with probability \(1 - \epsilon \), and since \(Q \) is an increasing property, we get \(mp(e) \geq p(1 - \epsilon) \). Now we’re done for the following reasons.

\[p(\epsilon) \leq p\left(\frac{1}{2}\right) \leq p(1 - \epsilon) \leq mp(\epsilon) \]

Thus, \(p\left(\frac{1}{2}\right) \) must be asymptotically equivalent to \(p(\epsilon) \) and \(p(1 - \epsilon) \) is asymptotically the same as \(p(\epsilon) \).

Example of non-monotonic property: Whether the number of elements in a set is even. This will vary non-monotonically as a single item is added to the set.

Another Combinatorial Structure - CNF boolean structure

Boolean formula of the form:

\[f(x) = (x_1 + x_2 + x_3)(x_1 + x_4 + x_5)(\ldots)(\ldots) \]

Consider the case where we have \(n \) boolean variables and clauses with \(k \) variables in each clause. As the number of clauses increases, the probability of the formula having a satisfying assignment decreases. We seek to prove that this is a monotone property and therefore, there is a threshold. That is, there is some number of clauses above which the formula ceases to be satisfiable for any assignment of truth values to variables.

In other words: Generate a random CNF formula \(f \) with \(k \) literals per clause, \(n \) variables, and \(c \) clauses. Fix \(k \) and \(n \). Then, the probability that \(f \) is satisfiable depends solely on the number of clauses.

Theorem: There exists a threshold, \(c \) where \(c = r_k n \) and \(r \) is the ratio of number of clauses to number of variables.

First, let’s think about this question: Given an assignment, what is the probability that a random clause is satisfiable? For a clause to be true, recall that only one of the \(k \) variables in the clause must be true. We know that the probability that a single clause of size \(k \) is satisfiable is \(1 - \frac{1}{2^k} \). Suppose we have \(r_n \) independent clauses. **Then the probability that a random clause is satisfiable is: \((1 - \frac{1}{2^k})^{r_n} \)**, and the expected number of satisfying assignments is \(2^n \left(1 - \frac{1}{2^k}\right)^{r_n} \).

What does \(r \) have to be to change the expected number of satisfying assignment from 0 to 1? Let \(r = 2^k \ln 2 \). Then we have:

\[
2^n \left(1 - \frac{1}{2^k}\right)^{2^k n \ln 2} \approx 2^n e^{-n \ln 2} \approx 2^n \cdot 2^{-n} \approx 1
\]

for reasonably large \(k \).