Primal Shatter Function $\Pi_S(n)$

For a set system $S = (X, \mathcal{S})$ of VC-dimension d, we know that a set A of $\leq d$ points can be shattered into all 2^n unique subsets by intersection with sets in \mathcal{S}. What is the maximum number of unique subsets that can be obtained for a set A of size $n > d$? The number of possible subsets as a function of n is known as the Primal Shatter Function and is denoted by $\Pi_S(n)$. The function will have value 2^n until $n = d$, at which point it will grow at some slower pace.

Example: Consider the case of rectangles. We can shrink any rectangle until all of its sides contain a point inside, and consider this to be a representative canonical rectangle for any rectangle that contains the same points. A rectangle is defined by at most 4 points that define its edges. Therefore we can choose from at most n points to represent the left side of the rectangle, the right side, etc. Thus there are at most n^4 unique canonical rectangles.

We claim that for a set system of finite VC-dimension, the function representing the number of subsets that can be obtained is polynomial in n. More specifically:

Lemma: For any set system $S = (X, \mathcal{S})$ with VC-dimension d, an upper bound on $\Pi_S(n)$ is given by

$$\Pi_S(n) \leq \sum_{i=0}^{d} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}$$

Proof: We will prove this by induction on n, and then for fixed n by induction on d. Each entry of the table (n,d) will depend on the value of $(n-1,d)$ and $(n-1,d-1)$. Thus we need to fill in the upper part of the chart and the left column as base cases.

Base Case for n ($n \leq d$): We know that $\Pi_S(n) = 2^n$ because our set system can shatter n points. Further, we have $\sum_{i=0}^{d} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n$, so this base case holds.
Base Case for \(d = 0 \): We are attempting to determine the value of \(\Pi_S(k) \) where \(S \) has a VC-dimension of 0. What does this mean? For one thing, a set system with VC-dimension 0 must have at most one set. If it had two different sets \(C \) and \(D \), then one of those sets must have 1 point \(x \) which is not in the other. Then we could pick that point \(x \) and the sets \(C \) and \(D \) would shatter it, meaning the set system at least has VC-dimension 1. So a set system of VC-dimension 0 can at most only shatter the empty set. We have \(\Pi_S(n) = 1 \) and \(\sum_{i=0}^{\binom{n}{i}} = 1 \), so this base case holds.

Inductive Step: To bound \(\Pi_S(n) \) for the set system \(S = (X, S) \), we can remove one element \(x \) from \(X \) and consider \(\Pi_{S_1}(n - 1) \) for the system

\[
S_1 = (X - \{x\}, S)
\]

Let \(S \) be some element of \(S \) that does not include \(x \) (we will write \(S \cup \{x\} \) if we want to include it). There are two cases to consider:

Case 1 – exactly 1 of \(S \) and \(S \cup \{x\} \) is in \(S \): Here, we will have exactly 1 of \(S \cap A \) or \(S \cup \{x\} \cap A \) as one of our partitions. We can identify either one of these with the set \(S \cap A_i \) in \(S_2 \), where \(A_i \) is the set \(A \) without the point \(x \). This says that \(\Pi_S(n) \) is equal to \(\Pi_{S_1}(n - 1) \). Since \(\Pi_{S_1}(n - 1) \leq \sum_{i=0}^{\binom{n-1}{i}} \) by the inductive hypothesis, and \(\sum_{i=0}^{\binom{n-1}{i}} \leq \sum_{i=0}^{\binom{n}{i}} \), it must be that \(\Pi_S(n) \leq \sum_{i=0}^{\binom{n}{i}} \) as desired.

Case 2 – both \(S \) and \(S \cup \{x\} \) are in \(S \): In this case, \(S \) and \(S \cup \{x\} \) define distinct subsets in the set system \(S \), but both define the same subset in \(S_1 \). This tells us that \(\Pi_{S_1}(n - 1) \) and \(\Pi_S(n) \) differ by the cardinality of the set \(\{X - \{x\} \cap S \mid both S and S \cup \{x\} are in S\} \). We will define the set

\[
S_2 = (X - \{x\}, \{S \mid S \text{ and } S \cup \{x\} \text{ are in } S\})
\]

Then we have the following recurrence relation:

\[
\Pi_S(n) = \Pi_{S_1}(n - 1) + \Pi_{S_2}(n - 1)
\]

We know bounds on the latter two terms by the inductive hypothesis, so we just have to add them together.

Claim: \(S_1 \) has VC-dimension \(\leq d \).

To see this, suppose that the VC-dimension is \(\geq d \). Then there exists some set \(A \), \(|A| > d \) that can be shattered by \(S \), which is a contradiction.
Claim: S_2 has VC-dimension $\leq d-1$.

To see this, note that if $A - \{x\}$ is shattered in S_2 then A is shattered in S. If S_2 had VC-dimension $> d-1$, then S would have VC-dimension $> d$, a contradiction.

By the inductive hypothesis, $\Pi_{S_1}(n-1) \leq \sum_{i=0}^{d} \binom{n-1}{i}$ and $\Pi_{S_2}(n-1) \leq \sum_{i=0}^{d-1} \binom{n-1}{i}$.

Thus

$$\Pi_S(n) = \Pi_{S_1}(n-1) + \Pi_{S_2}(n-1) \leq \sum_{i=0}^{d} \binom{n-1}{i} + \sum_{i=0}^{d-1} \binom{n-1}{i}$$

$$= \left[\binom{n-1}{0} + \binom{n-1}{1} + \cdots + \binom{n-1}{d-1}\right] + \left[\binom{n-1}{0} + \binom{n-1}{1} + \cdots + \binom{n-1}{d-1}\right]$$

$$= \binom{n-1}{0} + \left[\binom{n-1}{0} + \binom{n-1}{1}\right] + \cdots + \left[\binom{n-1}{d-1} + \binom{n-1}{d}\right]$$

$$= \sum_{i=0}^{d} \binom{n-1}{i} + \binom{n-1}{i} = \sum_{i=0}^{d} \binom{n}{i}$$

We use the fact $\binom{n-1}{i} + \binom{n-1}{i-1} = \binom{n}{i}$. Combinatorial proof: to choose a subset T of size i from a set S of size n, pick an element x. If x is in T, then there are $\binom{n-1}{i-1}$ ways to choose the remaining $i-1$ elements. If x is not in T, then there are $\binom{n-1}{i}$ ways to choose the i elements from $S - \{x\}$.