CS 4850: Mathematical Foundations for the Information Age

Lecture #34 - April 13, 2009

Scribes: Scott Rogoff and Andrew Owens

Primal Shatter Function $\Pi_{\mathcal{S}}(n)$

For a set system S = (X, S) of VC-dimension d, we know that a set A of \leq d points can be shattered into all 2^n unique subsets by intersection with sets in S. What is the maximum number of unique subsets

that can be obtained for a set A of size n > d? The number of possible subsets as a function of n is known as the *Primal Shatter Function* and is denoted by $\Pi_{\mathcal{S}}(n)$. The function will have value 2^n until n = d, at which point it will grow at some slower pace.

Max number of subsets that a set of size n can be partitioned into by sets in S

Therefore we can choose from at most n points to represent the left side of the rectangle, the right side, etc. Thus there are at most n⁴ unique canonical rectangles.

We claim that for a set system of finite VC-dimension, the function representing the number of subsets that can be obtained is polynomial in n. More specifically:

Lemma: For any set system S = (X, S) with VC-dimension d, an upper bound on $\Pi_S(n)$ is given by

$$\Pi_{\mathcal{S}}(n) \leq \sum_{i=0}^{d} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d}$$

Proof: We will prove this by induction on n, and then for fixed n by induction on d. Each entry of the table (n,d) will depend on the value of (n-1,d) and (n-1,d-1). Thus we need to fill in the upper part of the chart and the left column as base cases.

Base Case for n (n \leq d): We know that $\Pi_{\mathcal{S}}(n) = 2^n$ because our set system can shatter n points. Further, we have $\sum_{i=0}^{d} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n$, so this base case holds.

Base Case for d (d = 0): We are attempting to determine the value of $\Pi_{\mathcal{S}}(k)$ where \mathcal{S} has a VC-dimension of 0. What does this mean? For one thing, a set system with VC-dimension 0 must have at most one set. If it had two different sets C and D, then one of those sets must have 1 point x which is not in the other. Then we could pick that point x and the sets C and D would shatter it, meaning the set system at

Base case: d = 0

least has VC-dimension 1. So a set system of VC-dimension 0 can at most only shatter the empty set. We have $\Pi_{\mathcal{S}}(n) = 1$ and $\sum_{i=0}^{0} {n \choose i} = {n \choose 0} = 1$, so this base case holds.

Inductive Step: To bound $\Pi_{\mathcal{S}}(n)$ for the set system $\mathcal{S}=(X,\mathcal{S})$, we can remove one element x from X and consider $\Pi_{\mathcal{S}_1}(n-1)$ for the system

$$S_1 = (X - \{x\}, S)$$

Let S be some element of S that does not include x (we will write $S \cup \{x\}$ if we want to include it). There are two cases to consider:

Case 1- exactly 1 of S and $S \cup \{x\}$ is in S: Here, we will have exactly 1 of $S \cap A$ or $S \cup \{x\} \cap A$ as one of our partitions. We can identify either one of these with the set $S \cap A_1$ in S_1 , where A_1 is the set A without the point X. This says that $\Pi_S(n)$ is equal to $\Pi_{S_1}(n-1)$. Since $\Pi_{S_1}(n-1) \leq \sum_{i=0}^d \binom{n-1}{i}$ by the inductive hypothesis, and $\sum_{i=0}^d \binom{n-1}{i} \leq \sum_{i=0}^d \binom{n}{i}$, it must be that $\Pi_S(n) \leq \sum_{i=0}^d \binom{n}{i}$ as desired.

Case 2 – both S and S \cup {x} are in \mathcal{S} : In this case, S and S \cup {x} define distinct subsets in the set system \mathcal{S} , but both define the same subset in \mathcal{S}_1 . This tells us that $\Pi_{\mathcal{S}_1}(n-1)$ and $\Pi_{\mathcal{S}}(n)$ differ by the cardinality of the set { $X - \{x\} \cap \mathcal{S} \mid both S \ and S \cup \{x\} \ are \ in \mathcal{S}$ }. We will define the set

$$S_2 = (X - \{x\}, \{S \mid S \text{ and } S \cup \{x\} \text{ are in } S\})$$

Then we have the following recurrence relation:

$$\Pi_{\mathcal{S}}(n) = \Pi_{\mathcal{S}_1}(n-1) + \Pi_{\mathcal{S}_2}(n-1)$$

We know bounds on the latter two terms by the inductive hypothesis, so we just have to add them together.

Claim: S_1 has VC-dimension \leq d.

To see this, suppose that the VC-dimension is > d. Then there exists some set A, |A| > d that can be shattered by S, which is a contradiction.

Claim: S_2 has VC-dimension \leq d-1.

To see this, note that if A - $\{x\}$ is shattered in S_2 then A is shattered in S. If S_2 had VC-dimension > d-1, then S would have VC-dimension > d, a contradiction.

By the inductive hypothesis, $\Pi_{\mathcal{S}_1}(\mathsf{n-1}) \leq \sum_{i=0}^d \binom{n-1}{i}$ and $\Pi_{\mathcal{S}_2}(\mathsf{n-1}) \leq \sum_{i=0}^{d-1} \binom{n-1}{i}$.

Thus

$$\begin{split} \Pi_{\mathcal{S}}(\mathbf{n}) &= \Pi_{\mathcal{S}_1}(\mathbf{n}\text{-}1) + \Pi_{\mathcal{S}_2}(\mathbf{n}\text{-}1) \leq \sum_{i=0}^d \binom{n-1}{i} + \sum_{i=0}^{d-1} \binom{n-1}{i} \\ &= \left[\binom{n-1}{0} + \binom{n-1}{1} + \cdots + \binom{n-1}{d-1} \right] + \left[\binom{n-1}{0} + \binom{n-1}{1} \cdots + \binom{n-1}{d} \right] \\ &= \binom{n-1}{0} + \left[\binom{n-1}{0} + \binom{n-1}{1} \right] + \cdots \left[\binom{n-1}{d-1} + \binom{n-1}{d} \right] \\ &= \sum_{i=0}^d \binom{n-1}{i} + \binom{n-1}{i-1} = \sum_{i=0}^d \binom{n}{i} \end{split}$$

We use the fact $\binom{n-1}{i} + \binom{n-1}{i-1} = \binom{n}{i}$. Combinatorial proof: to choose a subset T of size i from a set S of size n, pick an element x. If x is in T, then there are $\binom{n-1}{i-1}$ ways to choose the remaining i - 1 elements. If x is not in T, then there are $\binom{n-1}{i}$ ways to choose the i elements from S - $\{x\}$.