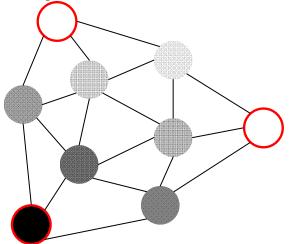
CS 4850: Wednesday, 4 March 2009

Random Walks: Probabilistic Interpretations of Voltage and Current

Scribes: Christie Brandt (ccb35) and Sara Tansey (sjt33)

1) Review: Last lecture...

- a) The problem: modeling random walks on undirected graphs.
- b) To converge to a stationary probability, an undirected graph must be:
 - i) Connected
 - (1) You can make an arbitrary graph connected by adding a "restart node" with an edge to every node in the graph; with a certain probability, you will take the edge to the restart node.
 - ii) Aperiodic (the greatest common denominator of the lengths of all cycles should be 1)
- c) **Harmonic functions**: a harmonic function on an undirected graph designates exterior and interior points as follows: exterior points are given a fixed value. The value of an interior point is a weighted average of its neighbors.
 - i) A harmonic function takes on its maximum and minimum values on the boundary. (This makes sense, because any interior node is the average of the nodes around it)
 - ii) The difference of two harmonic functions is harmonic; in other words, if g and h are harmonic, then g-h is harmonic.
 - iii) Given a set of boundary conditions and a weight function, there is a unique harmonic function satisfying these boundary conditions.
 - iv) Pictorial representation of a harmonic function. Exterior nodes are circled in red.



d) Analogy between Electrical Circuits and Random Walks:

- i) Phys E&M 101:
 - (1) Ohm's Law: v=ir (This is equivalent to i = vc, where c is the conductance)
 - (2) Kirchoff's Law: $\sum_{y} i_{xy} = 0$
- ii) Each edge in the undirected graph is a resistor; an edge xy has resistance r_{xy} .
 - (1) The resistance $r_{xy} = Pr(going to y \mid currently at x)$
- iii) Conductance $(c_{xy}) = 1/r_{xy}$

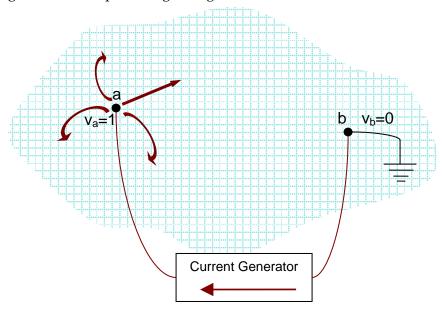
(1)
$$P_{xy} = Pr(going to y \mid currently at x) = \frac{c_{xy}}{c_x} = \frac{c_{xy}}{\sum_{y} c_{xy}}$$

2) Changing order of conductance subscripts – Claim: $c_x P_{xy} = c_y P_{yx}$

a) Proof:
$$c_x P_{xy} = c_x \frac{c_{xy}}{c_x} = c_{xy} = c_{yx} = c_y \frac{c_{yx}}{c_y} = c_y P_{yx}$$

- b) Therefore, $c_x P_{xy} = c_y P_{yx}$. We will uses this identity in the proof of the interpretation of current.
- 3) Interpretation of Voltage:
 - a) Claim: v_x = Pr(a random walk, started at x, reaches a before b).

b) Setup: let us choose two vertices, a and b, from a random undirected graph. We will hook up a current generator to a, providing enough current so that $v_a = 1$. We also will ground b so that $v_b = 0$.



- c) Voltage is a harmonic function. Proof:
 - i) Voltage v_x = voltage at vertex x

ii)
$$i_{xy} = \frac{v_x - v_y}{v_{xy}} = (v_x - v_y)c_{xy}$$

iii) By Kirchoff's Law,
$$\sum_{y} i_{xy} = 0$$
.

iv) Substituting for
$$i_{xy}$$
, $\sum_{y} (v_x - v_y)c_{xy} = 0$

v) We can then rearrange this as:
$$\sum_{y} v_{y} c_{xy} = \sum_{y} v_{x} c_{xy} = v_{x} \sum_{y} c_{xy} = v_{x} c_{x}$$

vi) Solving for v_x, we have:
$$v_x = \frac{\sum_{y} v_y c_{xy}}{c_x} = \sum_{y} \left(v_y \frac{c_{xy}}{c_x} \right) = \sum_{y} \left(v_y P_{xy} \right)$$

vii) Notice that voltage is a harmonic function, since
$$v_x = \sum_y v_y P_{xy}$$

- d) P_x is a harmonic function. Proof:
 - i) P_x is the probability that a walk, started at x, reaches a before b.
 - ii) P_x therefore can be recursively defined by its neighbors: let y be the neighbors of x. Then:

$$P_{x} = \sum_{y} P_{y} P_{xy}$$

- e) Now, examine the functions for v_x and P_x . Also, recall that v_x and P_x have the same weights and boundary conditions; therefore, they must be the same.
- f) Conclusion: if $v_b = 0$ and $v_a = 1$, then $v_x = P_x = Pr(a \text{ random walk, started at } x, \text{ reaches a before b.})$

4) Interpretation of Current:

Claim: when 1 A of current is injected into a, the amount of current that goes through an edge is equivalent to the net frequency with which a random walk from a to b goes through the edge.

- a) edge xy.
- b) Let u_x be the number of visits to vertex x on a walk from a to b before reaching b.
 - i) $u_b = 0$. (This makes sense at b, we've already reached b...)
 - ii) For $x \ne a$, b, $u_x = \sum_y u_y P_{yx}$

- (1) (this is a recursive definition in which the set of y values are the neighbors of x.)
- c) Rearranging this equation:

$$u_{x} = \sum_{y} u_{y} P_{yx}$$

$$\Rightarrow u_{x} = \sum_{y} u_{y} P_{xy} \frac{c_{x}}{c_{y}} \text{ (using our conductance identity to switch subscript order)}$$

$$\Rightarrow u_{x} = \sum_{y} u_{y} P_{xy} \frac{c_{x}}{c_{y}}$$

$$\Rightarrow u_{x} = \sum_{y} u_{y} P_{xy} \frac{c_{x}}{c_{y}}$$

$$\Rightarrow \frac{u_{x}}{c_{x}} = \sum_{y} P_{xy} \frac{u_{y}}{c_{y}} \text{ (which is harmonic, with a boundary condition } \frac{u_{b}}{c_{b}} = 0 \text{)}$$

- d) Now let us set the voltage coming into a, v_a , as $v_a = \frac{u_a}{c_a}$. We are allowed to set the incoming voltage as anything we want; however, this choice means that since $\frac{u_x}{c_x}$ and v_x are both harmonic and have identical boundary conditions and weights, they are equivalent.
- e) What is the current i_{xy} ?

$$i_{xy} = (v_x - v_y)c_{xy} \text{ (Ohm's Law)}$$

$$= \left(\frac{u_x}{c_x} - \frac{u_y}{c_y}\right)c_{xy} \text{ (Because } v_x \text{ and } \frac{u_x}{c_x} \text{ represent the same harmonic function)}$$

$$= u_x \frac{c_{xy}}{c_x} - u_y \frac{c_{xy}}{c_y}$$

$$= u_x P_{xy} - u_y P_{yx}$$

- i) What is the current into *a* from the current source?
 - (1) The expected number of times the walk leaves a is 1. Therefore, the current into a from the current source for $v_a = \frac{u_a}{c}$ is 1 A.
- ii) Therefore, since $i_{xy} = u_x P_{xy} u_y P_{yx}$, the current is the expected net number of times we leave the node x and go to y.
- iii) (More detail on this proof next lecture)

Summary of Electrical Circuit Analogy:		
Electrical Property	Identities	Probabilistic Interpretation
Resistance (r _{xy})	• v = ir (Ohm's Law)	P_{xy} =Pr(going to y currently at x)
Conductance (c _{xy})	• $c_{xy}=1/r_{xy}$ • $c_x P_{xy} = c_y P_{yx}$ • $P_{xy} = \frac{c_{xy}}{c_x} = \frac{c_{xy}}{\sum_y c_{xy}}$	1/ Pr(going to y currently at x)
Voltage (v _x)	$\bullet v_x = \sum_y v_y P_{xy}$	Pr(a random walk, started at x, reaches a before b)
Current (i _{xy})	• $\sum_{y} i_{xy} = 0$ (Kirchoff's Law) • $i_{xy} = (v_x - v_y)c_{xy}$ (Ohm's Law)	net frequency with which a random walk from a to b goes through edge x,y.

 $\bullet \quad i_{xy} = u_x P_{xy} - u_y P_{yx}$