Branching Process (review from 2/13/09 lecture)

Given \(P_0, P_1, P_2, \ldots \) where \(P_n \) = probability of \(n \) children

Generating function \(f(x) = \sum_{i=0}^{\infty} P_i x^i \)

\[f_1(x) = f(x) \]

\[f_{i+1}(x) = f_i(f(x)) \]

\[x_1 \quad f(x) = a_0 + a_1 x + a_2 x^2 + \ldots \]

\[x_1 + x_2 \quad f^2(x) = a_0 a_0 + (a_0 a_1 + a_1 a_0) x + (a_0 a_2 + a_1 a_1 + a_2 a_0) x^2 + \ldots \]

\[f_i(x) = b_0 + b_1 x + b_2 x^2 + \ldots = b_0 + b_1 f(x) + b_2 f^2(x) + \ldots \]

Slope of \(f(x) \) at \(x = 1 \) (m), 3 cases:

\(m < 1 \) * then \(q = 1 \)

\(m = 1 \to a) \ P_1 = 1 \ b) \ P_1 < 1 \)

\(m > 1 \to a) \ P_0 > 0 \ b) \ P_0 = 0 \quad * \text{only in this case does } q < 1 \text{ converge} \)

\[\lim_{n \to \infty} f_i(x) = c_0 + c_1 x + c_2 x^2 + \ldots \]

if limit is constant, probability of \(i > 0 \) children is 0 (because \(c_1 x + c_2 x^2 + \ldots \to 0 \)) and probability of 0 children is \(c_0 \).
Branching Processes: Expected Size of Finite Component

All extinct trees have finite size. Let \(S_i = \Pr(\text{tree size} = i) \) (note: this implies \(\sum_{i=0}^{\infty} S_i = 1 \))

\[
E = \text{Expected tree size} = \sum_{i=0}^{\infty} iS_i
\]

Despite all extinct trees having finite size, the expected size of the trees may not be finite

Example:

\[
S_i = \frac{6}{\pi^2} \left(\frac{1}{i^2} \right)
\]

Note: \(\sum_{i=0}^{\infty} S_i = 1 \), a famous result due to Euler in 1735, this was written incorrectly as \(\frac{\pi}{6} \) in class

\[
E = \frac{6}{\pi^2} \sum_{i=0}^{\infty} \frac{1}{i^2}, \text{ which diverges.}
\]

What is the probability of extinction if the 1st generation has \(k \) children?

\(q = \) probability of extinction (determined based on the \(\Pr_i = \) probability of \(i \) children, see previous lecture)

Each of the \(k \) children has probability \(q \) of becoming extinct. The entire tree will become extinct if and only if all \(k \) children become extinct. These events are independent of each other, so the probability that the entire tree becomes extinct is \(q^k \).

Note: \(\sum_{k=0}^{\infty} P_k q^k = q \)

Expected Size of 1st generation over all extinct trees

\(Z_i = \) Random variable denoting size of \(i \)th generation

\[
\Pr(Z_i = k|\text{extinction}) = \frac{\Pr(Z_i = k) \times \Pr(\text{extinction}|Z_i = k)}{\Pr(\text{extinction})}
\]

\[
\Pr(Z_1 = k|\text{extinction}) = \frac{P_k q^k}{q} = P_k q^{k-1}
\]