CS 4850 / Lecture 12
February 13, 2009


Administrative

· Cooperation on homework is encouraged

· Design of own problems for homework is encouraged

Outline

Continue with non-uniform degree paragraphs after the discussion of G(n, p)s. 

· Motivation: G(n, p) model generates graphs with concentrated degrees. However, in real world, degrees would not be concentrated in certain number(pn) or range. 

Giant Component with Molloy Reed

Molloy Reed – A random graph will have giant component if [image: image2.png]Yimpii—2)4; >0



, where [image: image4.png]


 is fraction of vertices of degree i. 

· Reference: http://www.cs.toronto.edu/~molloy/webpapers/pc2.ps

· This theorem can work with power law or other types of degree distributions
· Power Law example: [image: image6.png]



Growing graph model – start with a vertex, add vertices and random edges. Pick vertices with probability proportional to degree, i.e. a “the rich get richer” scheme. 

The goal is to explain and understand Molloy-Reed.

Probability of degree I – Note there’s difference between the fraction of vertices with degree I, [image: image8.png]


, and the probability of picking a vertex of degree i after tracing an random edge. 
Suppose half of the vertices are of degree 1 and the other half are of degree 2(Left), then we would usually run program to traverse the graph.  Picking an edge at random to trace vertices, the probability that the vertex is of degree i:
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	[image: image10.png]



	Explanation: 
There are 1*3+2*3 = 9 edges in total. 6 lead to vertices of degree 2 and 3 lead to vertices of degree 1. Therefore, picking an edge at random will have 3/9 = 1/3 probability leading to a vertex of degree 1.  This is the same as: 

[image: image11.png]





Notice that in the Molloy-Reed formula,  [image: image13.png]Yimpii—2)4; >0



, the [image: image15.png]


 component represents p(i). The meaning of (i-2) term is intuitively about increase of tree paths as following: 
	i = 0
	--
	When i = 0, the node has no edges, no tree ( not considered )

	i = 1
	-1
	When i = 1, tree ends, -1 cost as it reduces a path in the tree.

	i = 2
	0
	When i = 2, one path in, one path out, no change in the number of tree paths, 0 cost.

	i = 3
	1
	When i = 3, one path becomes two after going through the node, increase 1.

	…
	
	

	i
	i-2
	Any extra edges besides the one in and one out that maintain the old path are adding new paths: adding i -2


Therefore, the intuitive explanation for [image: image17.png]Nimgili — 2)4;



 is to measure total probability of increasing tree paths when we traverse the vertices. 
Example of [image: image19.png]Nimgili — 2)4;



 for [image: image21.png]s(n,§



 – The fraction of the vertices of degree [image: image23.png]


 would just be the probability that the vertex in [image: image25.png]s(n,§



 has i edges.  [image: image27.png]


 . Therefore,
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As [image: image30.png]


, we can use Poisson to estimate [image: image32.png]


, using term [image: image34.png]


.

Mechanism – Branching Process

Process – Generating a random tree starting from one vertex. During each cycle, for each leaf vertex, generate 1 random number n for number of children. 
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What happens? 

Phenomenon – Two cases: 
1) If the probability of small n (branching factor) is big, then the tree would die
2) If the probability of small n (branching factor) is small, the tree will grow to infinity

Goal – Condition for finite-size and infinite-size tree; Expectation of the tree size; relationship to G(n, p). 
Motivation – Good starting point for modeling population. Yet, reality is more complicated than just dead tree or infinite-size tree. Deer population and human population can have dependencies as well as resource limitations.

Probability Distribution – There should be a probability associated with each integer i.  pi, the probability that number i is generated, or I children are generated. Then, we have a sequence: 
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Generating Function – We can convert the sequence to a function: 

[image: image36.png]



Claim: Let [image: image38.png]f;(x)



 be the generating function for number of children in jth generation, then,  
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Proof:  
Step 1.

The generating function of the sum of two identically distributed integer-value random variables x1 and x2 is the square of their generating function. 
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Because: 

When x1+ x2 =0, the (x1, x2) pair must be (0, 0), thus, probability is p0p0;
When x1+ x2 =1, the (x1, x2) pair must be (1, 0) or (0, 1) , thus, probability is p1p0+ p0p1;

When x1+ x2 =2, the (x1, x2) pair must be (2, 0) or (0, 2) or (1, 1) , thus, probability is p2p0+ p0p2+ p1p1, …
In general, the sum of I independent integer-value random variables has generating function [image: image44.png]


.
Step 2.

The coefficients of xi in [image: image46.png]f;(x)



is the probability of i children in jth generation. 
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Notice that [image: image49.png]f(x)



 always has positive coefficients and when we plug [image: image51.png]f(x)



 into [image: image53.png]f;(x)



, the resulting coefficients should all be positive. Thus, all of [image: image55.png]fx), f2(x)



, [image: image57.png]f3lx)




are monotonic. 

When p0=1, then they are not strictly monotonic. 

When  p0<1, then they are strictly monotonic.

Consider equation [image: image59.png]flx) =x



. [image: image61.png]


 is always a root. This is because 
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Are there any other roots?
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Take the derivative then,
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Denote [image: image65.png]f'lx) =m



, then, we consider (1) m<1; (2) m=1; and (3) m>1. 
1) m<1

The line of [image: image67.png]flx)



 does not cross x-axis. 

2) m=1

a. p1 = 1

Just a simple line, not of interest

b. p1 < 1

Then, we have p0>0

3) m>1

a. p0 = 0

0 is another root. 

b. p0 > 0

We have a root at q. Then, q is the probability of extinction; 1-q is the probability of immortality. 

Relation to G(n, p): here we are talking about finite component vs. infinite component. In G(n, p), the relation is between small components and big component. The case of large components in G(n, p) can be thought of as edges growing within connected components, creating cycles, linking back to the old vertices in the set. 
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Why is q the probability of extinction? 

We suppose [image: image69.png]limje. f;(x) = @g + agx + azx" + -



, when all the [image: image71.png]


 should be zero, and [image: image73.png]


 is the probability that it dies out. This [image: image75.png]


. Why isn’t [image: image77.png]


? [image: image79.png]


. 1-q is positive, the probability of infinity out there.

To prove [image: image81.png]


, not a function of x, we can take any x not 1, and calculate f(x), and then, take the result as new x, calculate new f(x), so on as shown in the graph below. Then, obviously, the recursion converges to the root at q always. 

QED

(END OF CLASS)
Next Class: If the tree dies out, what is the expected size of the tree?
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