5 Axioms
1) Pagerank satisfies the 5 Axioms
2) Any ordering that satisfies axioms is equivalent to pagerank.

How can this be? If you change restart rate, will it keep the same ordering?
-> 5 Axioms only apply to strongly connected graphs with unweighted edges.

Ranking: voting, movies, restaurants, WWW pages, etc

Arrow: an economist who came up with axioms for voting systems.

eg) A 40%
 B 35%
 C 25%
Is A the winner? What if everyone who voted for C would vote for B over A? Then A would have 40%, B
would have 60%. Is A still the winner?
 ✗ Removing irrelevant factors shouldn’t affect the result.

eg) 4 votes A > B > C
 3 votes B > C > A
 2 votes C > A > B
Least people voted for C as their first choice. So drop C, and give the 2 votes to A instead. Is A the
winner?
But 5 people (2nd and 3rd cases) prefer C over A, while only 4 people (1st case) prefer A over C. Maybe C
should win?
 ✗ Ranking is very complex, and it is hard to make it fair.

Pagerank satisfies Axiom #2
(Axiom 2: Adding a self-loop to v does not change ordering of any other vertices but may improve
ranking for v)
Proof:
Adjacency matrix A:
\[
A = \begin{pmatrix}
0 & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
& \cdots & \cdots & \cdots & \cdots \\
& \cdots & \cdots & \cdots & \cdots \\
a_{n1} & & & & \\
\end{pmatrix}
\]

Normalize rows:

\[
B = \begin{pmatrix}
0 & b_{12} & b_{13} & \cdots & b_{1n} \\
b_{21} & b_{22} & b_{23} & \cdots & b_{2n} \\
& \cdots & \cdots & \cdots & \cdots \\
& \cdots & \cdots & \cdots & \cdots \\
b_{n1} & & & & \\
\end{pmatrix}
\]

Transpose:

\[
B^T = \begin{pmatrix}
0 & b_{21} & b_{31} & \cdots & b_{n1} \\
b_{12} & b_{22} & b_{32} & \cdots & b_{n2} \\
& \cdots & \cdots & \cdots & \cdots \\
& \cdots & \cdots & \cdots & \cdots \\
b_{1n} & & & & \\
\end{pmatrix}
\]

Looking for vector \(r = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} \) such that \(B^T r = r \)

Change 0 in matrix A to 1, then renormalize 1st column of \(B^T \).
All columns other than the 1st column in \(B^T \) stay the same.

Assume \(m = \) number of 1's in 1st row of A.
\[B^T r' = \begin{pmatrix} \frac{1}{m+1} & b_{21} & b_{31} & \ldots & b_{n1} \\ b_{22} \frac{m}{m+1} & b_{32} & \ldots & b_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} \frac{m}{m+1} & b_{2n} & \ldots & b_{nn} \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \frac{m}{m+1} \\ \vdots \\ r_n \frac{m}{m+1} \end{pmatrix} \]

\[
= \begin{pmatrix} r_1 \frac{1}{m+1} + r_1 \frac{m}{m+1} \\ r_2 \frac{m}{m+1} \\ r_3 \frac{m}{m+1} \\ \vdots \\ r_n \frac{m}{m+1} \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \frac{m}{m+1} \\ r_3 \frac{m}{m+1} \\ \vdots \\ r_n \frac{m}{m+1} \end{pmatrix} = r'
\]

For \(r_2 \) to \(r_n \), everything was multiplied by the same constant \(\frac{m}{m+1} \)

\(\Rightarrow \) ordering hasn’t been changed for vertices other than \(v \).

Any ordering that satisfies 5 axioms is equivalent to pagerank

Proof:

Proof outline: Select two vertices \(a \) & \(b \) and show that any ordering satisfying axioms preserves order of \(a \) and \(b \)

Remove each vertex \(v \) in some manner that does not change order of \(a \) and \(b \).

The remaining graph would look something like this,

with some links from \(a \) to \(b \), some links from \(b \) to \(a \), and some self-loops.
Equalize links \(a \to b \) and \(b \to a \) without changing the order.

![Diagram showing equalization of links](image)

Equalize number of self-loops.
(In our example, this may improve rank of \(b \).)

![Diagram showing equalization of self-loops](image)

By Axiom 1, ranking of \(a \) and \(b \) must be the same now.
(In our example, \(b \) must have had equal or lower rank than \(a \) before equalizing self-loops.)
To convince you that the above process is possible we will prove that part of the process is performable without altering the ordering of a and b.

Lemma 4.2

Let v be a vertex with in and out degree 1, Successor s, and predecessor p. Then if the ranking satisfies the 5 axioms we can remove v and replace edges (p,v) and (v,s) with edge (p,s).

Starting case:

Axiom 3 – vote by committee allows us to insert a committee of 1 for P

Axiom 3 – vote by committee allows us to insert a committee of 3 for P

Since the members of the new committee of three are all ranked equally, Axiom 5 allows us to change the graph in this way
Axiom 3 implies that v can now be removed as it essentially a committee of one for its predecessor.

Axiom 5 implies that we can insert a node in the following way without changing the ranking.

Axiom 3 implies that the committee of 3 for P can be removed.
Axiom 3 implies that the committee of 1 for P can be removed.

Therefore we are able to remove any vertex with in and out degree 1 without changing the relative rankings of any pair of nodes (a,b) in the graph.