CS 485

Kareem Amin and Olga Belomestnykh

10 February, 2006

WTS: Every property of N_p has a threshold.

Let $p(\epsilon)$ be the function p(n) such that the probability that $N_{p(n)}$ has a property Q is ϵ . We need to show that for any $\epsilon > 0$ that \exists a constant m such that $p(1 - \epsilon) \leq m \cdot p(\epsilon)$.

We never want $p(\epsilon) = \frac{1}{n^{2/3}}$ and $p(1-\epsilon) = \frac{\log n}{n}$. We would like $p(\epsilon) = \frac{0.1}{n}$ and $p(1-\epsilon) = \frac{0.9}{n}$. i.e. $p(\epsilon) \le c \cdot p(\epsilon)$ where c is a constant.

<u>Theorem</u>: Every increasing property for N_p has a threshold. <u>Proof</u>: Let $0 < \epsilon \le 1/2$ and m be an integer such that $(1 - \epsilon)^m \le \epsilon$. ex: if $\epsilon = 0.1$ and $(1 - \epsilon) = 0.9$ then $0.9^{32} = 0.034 < 0.1$.

Consdier N_q - the union of m independent copies of $N_{p(\epsilon)}$. Since Q is an increasing property, if one or more of the m independent copies of $N_{p(\epsilon)}$ has the property Q, then N_q has the property Q. Thus, if N_q does not have property Q, then none of the $N_{p(\epsilon)}$ have the property Q.

$$Prob(N_q \notin Q) = Prob\left(\forall N_{p(\epsilon)}, N_{p(\epsilon)} \notin Q\right) = \left[1 - Prob\left(N_{p(\epsilon)} \in Q\right)\right]^m = (1 - \epsilon)^m \le \epsilon$$
$$[Prob(N_q \notin Q) \le \epsilon] \Rightarrow [Prob(N_q \in Q) \ge (1 - \epsilon)] \tag{1}$$

The union is equivalent to N_q where $q = 1 - (1 - p(\epsilon))^m$ since: (1 - $p(\epsilon)$) is the probability that an integer is not in a given copy.

 $(1 - p(\epsilon))^m$ is the probability that an integer is not in any of the *m* copies.

 $1 - (1 - p(\epsilon))^m$ is the probability that an integert is in one or more copies.

$$q = 1 - (1 - p(\epsilon))^m = 1 - (1 - m \cdot p(\epsilon) + ...) \le m \cdot p(\epsilon)$$

$$Prob(N_q \in Q) \le Prob(N_{m \cdot p(\epsilon)} \in Q) \qquad (2)$$

$$(1 - \epsilon) \le Prob(N_q \in Q) \le Prob(N_{m \cdot p(\epsilon)} \in Q) \qquad by (1) and (2)$$

$$p(1 - \epsilon) \le m \cdot p(\epsilon)$$

If $0 < \epsilon \le 1/2$ then $p(\epsilon) \le p(1/2) \le p(1-\epsilon) \le m \cdot p(\epsilon)$. Asymptotically $p(\epsilon)$, p(1/2) and $p(1-\epsilon)$ are equivalent $\Rightarrow p(1/2)$ is a threshold.