CS 485 Lecture Notes
February 6, 2006

G(n,1/2)
Looking for a clique $\quad(2-\varepsilon) \log n \quad \varepsilon>0$

Review

$\mathrm{N}=\{1,2, \ldots, \mathrm{n}\} \quad \mathrm{n} \rightarrow \infty$
$\mathrm{N}_{\mathrm{p}}=$ subset of N where each integer is selected independently with probability p Arithmetic Progression: $\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{a}+2 \mathrm{~b}, \mathrm{a}+3 \mathrm{~b}, \ldots$

For what p does an arithmetic progression of length k appear?
$\mathrm{n}^{-2 / \mathrm{k}}$
Proof:
n^{2} potential progressions of length k
let x be the number of progressions of length k
$\mathrm{E}(\mathrm{x})=\mathrm{n}^{2} \mathrm{p}^{\mathrm{k}}$
If $\mathrm{p} \ll \mathrm{n}^{-2 / \mathrm{k}} \quad \lim _{n \rightarrow \infty} E(x)=0 \quad \therefore \lim _{n \rightarrow \infty} P(x=0)=1$
If $\mathrm{p} \gg \mathrm{n}^{-2 / \mathrm{k}} \quad \lim _{n \rightarrow \infty} E(x)=\infty \quad$ would like to show $\lim _{n \rightarrow \infty} P(x=0)=0$
(use second moment method)
Second Moment Method
If $\lim _{n \rightarrow \infty} \frac{\operatorname{Var}(x)}{\mathrm{E}^{2}(x)}=0 \Rightarrow \mathrm{P}(\mathrm{x}>0)=1$

Indicator Variable $I_{i}=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$ if the ith arithmetic progression is there
$\mathrm{x}=\mathrm{I}_{1}+\mathrm{I}_{2}+\ldots+\mathrm{I}_{\mathrm{n} 2}$
$\operatorname{Var}(\mathrm{x})=\sum_{i} \sum_{j} \operatorname{Cov}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}\right) \quad * \operatorname{Cov}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}\right)=0$ if I_{i} and I_{j} are disjoint
n^{2} possible arithmetic progressions
n^{4} possible "pairs" of arithmetic progressions

1) almost all pairs are disjoint
2) n^{3} pairs overlap in one integer
n^{2} possibilities for $1^{\text {st }}$ arithmetic progression
kn for $2^{\text {nd }}$, since an integer is contained in n arithmetic progressions
$\operatorname{Cov}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}\right) \leq \mathrm{E}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}\right)=\mathrm{p}^{2 \mathrm{k}-1}$
3) n^{2} pairs overlap in 2 integers

$$
\operatorname{Cov}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}\right) \leq \mathrm{E}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}\right)=\mathrm{p}^{2 \mathrm{k}-2}
$$

$\operatorname{Var}(\mathrm{x}) \leq \mathrm{n}^{3} \mathrm{p}^{2 \mathrm{k}-1}+\mathrm{n}^{2} \mathrm{p}^{2 \mathrm{k}-2}$
$\frac{\operatorname{Var}(x)}{E^{2}(x)} \leq \frac{n^{3} p^{2 k-1}}{n^{4} p^{2 k}}+\frac{n^{2} p^{2 k-2}}{n^{4} p^{2 k}}=\frac{1}{n p}+\frac{1}{(n p)^{2}} \rightarrow 0 \quad$ as $\mathrm{n} \rightarrow \infty$
$\mathrm{p}=\mathrm{n}^{-2 / \mathrm{k}} \quad \lim _{n \rightarrow \infty} \frac{1}{n p}+\frac{1}{(n p)^{2}}=0 \quad \mathrm{k}>2$
$\therefore \mathrm{P}(\mathrm{x}=0)=0$

Other Structures

Su Doku: Can you generalize to parameter n ?
What additional constraints are needed?
What properties appear?
Boolean formulas in CNF
$\mathrm{n}=$ number of variables

