CS 485 Lecture Notes February 6, 2006

G(n,1/2)

Looking for a clique $(2-\varepsilon)\log n$ $\varepsilon > 0$

Review

N = {1,2,...,n} $n \rightarrow \infty$

 N_p = subset of N where each integer is selected independently with probability p Arithmetic Progression: a, a+b, a+2b, a+3b, ...

For what p does an arithmetic progression of length k appear? $n^{-2/k}$

Proof:

n² potential progressions of length k let x be the number of progressions of length k $E(x)=n^2p^k$ If $p << n^{-2/k}$ $\lim_{n\to\infty} E(x) = 0$ $\therefore \lim_{n\to\infty} P(x=0) = 1$ If $p >> n^{-2/k}$ $\lim_{n\to\infty} E(x) = \infty$ would like to show $\lim_{n\to\infty} P(x=0) = 0$ (use second moment method)

Second Moment Method

If $\lim_{n \to \infty} \frac{Var(x)}{E^2(x)} = 0 \Rightarrow P(x>0)=1$

Indicator Variable $I_i = \begin{cases} 0 \\ 1 & \text{if the ith arithmetic progression is there} \end{cases}$

$$x = I_1 + I_2 + \dots + I_{n2}$$

Var(x) = $\sum_i \sum_j Cov(I_i, I_j)$ * Cov(I_i, I_j) = 0 if I_i and I_j are disjoint

n² possible arithmetic progressions

n⁴ possible "pairs" of arithmetic progressions

- 1) almost all pairs are disjoint
- 2) n³ pairs overlap in one integer
 n² possibilities for 1st arithmetic progression
 kn for 2nd, since an integer is contained in n arithmetic progressions

 $Cov(I_i, I_j) \le E(I_i, I_j) = p^{2k-1}$

3) n^2 pairs overlap in 2 integers

$$Cov(I_i, I_j) \le E(I_i, I_j) = p^{2k-2}$$

$$Var(x) \le n^3 p^{2k-1} + n^2 p^{2k-2}$$

$$\frac{Var(x)}{E^{2}(x)} \le \frac{n^{3} p^{2k-1}}{n^{4} p^{2k}} + \frac{n^{2} p^{2k-2}}{n^{4} p^{2k}} = \frac{1}{np} + \frac{1}{(np)^{2}} \to 0 \quad \text{as } n \to \infty$$
$$p = n^{-2/k} \quad \lim_{n \to \infty} \frac{1}{np} + \frac{1}{(np)^{2}} = 0 \qquad k > 2$$

∴P(x=0)=0

Other Structures

Su Doku: Can you generalize to parameter n? What additional constraints are needed? What properties appear?

Boolean formulas in CNF

n = number of variables

thresholds appear for structures other than G(n,p)

of clauses