More on Second Moment Method

Let x be a non-negative random variable. Then:
$P(x=0) \leq \frac{\sigma^{2}}{E^{2}(X)}=\frac{E\left(X^{2}\right)}{E^{2}(X)}-1$
The emergence of cycles in a graph $G(n, p)$:

- Occurs when $p=\Theta(1 / n)$ e.g. $\mathrm{p}=1 / 1000 \mathrm{n}$
- Doesn't occur if $\lim _{n \rightarrow \infty} \frac{p(n)}{1 / n}=0$

Let x be the number of cycles in graph G :
$E(x)=\sum_{k=3}^{n}\binom{n}{k} \frac{(k-1)!}{2} p^{k}$
$E(x) \leq \sum_{k=3}^{n} \frac{n(n-1) \ldots(n-k)}{k!} \frac{(k-1)!}{2} p^{k}$
$E(x) \leq \sum_{k=3}^{n} \frac{n^{k}}{2 k} p^{k} \leq \sum_{k=3}^{n}(n p)^{k}$

What if p is asymptotically less than $1 / n$? (i.e. $\lim _{n \rightarrow \infty} n p=0$)
Consider: $\sum_{k=0}^{\infty} a^{k}=1+a+a^{2}+\ldots=\frac{1}{1-a}$, for all $\mathrm{a}<1$
$\Rightarrow E(x) \leq \sum_{k=3}^{n}(n p)^{k}=0$
because k starts at 3 which means it doesn't include the first term of the series 1.
Therefore almost surely a graph selected at random has no cycle of p is asymptotically less than $1 / n$.

What if $n p=$ constant, c ?
$E(x)=\sum_{k=3}^{n}\binom{n}{k} \frac{(k-1)!}{2} p^{k}=\frac{1}{2} \sum_{k=3}^{n} \frac{n(n-1) \ldots(n-k)}{k n^{k}}(n p)^{k}$

- If c <1, it converges.
- If c >=1, it diverges, but why?

Let us add up the first log n terms:
$E(x) \geq \frac{1}{2} \sum_{k=3}^{n}\left(\frac{(n-\log n)}{n}\right)^{k}(n p)^{k} \geq \frac{(n-\log n)}{n} \log n \rightarrow \log n$ as $n \rightarrow \infty$

Other Strcutures

$N=\{1,2, \ldots, n\}$
Flip a coin which has head with probability p and put integer in the set the head occurs.
$N_{p}=\{1,2,5,9,13\}$

Does N_{p} contain an arithmetic progression of length k ?
$a, a+b, a+2 b, a+3 b, \ldots, a+(k-1) b$
Yes, arithmetic progression of length k abruptly appears when p reaches $n^{-\frac{2}{k}}$

Why?
There are n^{2} potential numbers of arithmetic progression
Let X_{k} be the expected number of arithmetic progression, then
$E\left(X_{k}\right)=n^{2} p^{k}$

$$
\begin{aligned}
& \text { If } p \ll n^{-\frac{2}{k}} \\
& E\left(X_{k}\right) \ll n^{2} \times n^{-2} \ll 1 \\
& \therefore \lim _{n \rightarrow \infty} E\left(X_{k}\right)=0
\end{aligned}
$$

$$
\text { If } p \gg n^{-\frac{2}{k}}
$$

$$
\therefore \lim _{n \rightarrow \infty} E\left(X_{k}\right)=\infty
$$

Aside: Covariance

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =E((x-E(x)(y-E(y)) \\
\operatorname{Var}(x+y) & =E\left[((x+y)-E(x+y))^{2}\right] \\
& =\operatorname{Var}(x)+\operatorname{Var}(y)+2 \operatorname{Cov}(x, y)
\end{aligned}
$$

If x and $y>0$, then
$\operatorname{Cov}(x, y)<E(x y)$

We now want to establish that
$\lim _{n \rightarrow \infty} E\left(X_{k}>0\right)=1$, for $p \gg n^{-\frac{2}{k}}$

Let I_{i} be the indicator variable for the $i^{\text {th }}$ arithmetic progression, then

$$
\begin{aligned}
& X_{k}=I_{1}+I_{2}+\ldots \\
& \operatorname{Var}\left(X_{k}\right)=\sum_{i} \sum_{j} \operatorname{Cov}\left(I_{i}, I_{j}\right)
\end{aligned}
$$

