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More on Second Moment Method 
 
Let x be a non-negative random variable. Then: 
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The emergence of cycles in a graph G(n, p): 
 
- Occurs when )/1( np Θ= e.g. p = 1/1000n 

- Doesn’t occur if 0
/1

)(lim =∞>− n
np
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Let x be the number of cycles in graph G: 
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What if p is asymptotically less than 1/n? (i.e. 0lim =∞>− npn ) 
 

Consider: 
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because k starts at 3 which means it doesn’t include the first term of the series 1. 
Therefore almost surely a graph selected at random has no cycle of p is asymptotically 
less than 1/n. 
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What if np = constant, c? 
 

 

 
- If c < 1, it converges. 
- If c >= 1, it diverges, but why? 

 
Let us add up the first log n terms: 
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Other Strcutures 
 
N = {1,2,…,n} 
 
Flip a coin which has head with probability p and put integer in the set the head occurs. 
Np = {1,2,5,9,13} 
 
 
Does Np contain an arithmetic progression of length k? 
a, a+b, a+2b, a+3b,…,a+(k-1)b 

Yes, arithmetic progression of length k abruptly appears when p reaches kn
2

−
 

 
 
Why? 
There are n2 potential numbers of arithmetic progression 
Let Xk be the expected number of arithmetic progression, then 
E(Xk) = n2pk 
 
 
 

If p << kn
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E(Xk) << 22 −× nn  << 1      
)(lim

kn XE∞>−∴ = 0 
 

If p >> kn
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Aside: Covariance 
 
Cov(x,y) = E((x-E(x)(y-E(y)) 
 
Var(x+y) = E[((x+y)-E(x+y))2] 
     = Var(x) + Var(y) + 2Cov(x,y) 
 
If x and y > 0, then 
Cov(x,y) < E(xy)  
 
 
We now want to establish that  

)0(lim >∞>− kn XE = 1,  for p >> kn
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Let Ii be the indicator variable for the ith arithmetic progression, then 
 
Xk = I1 + I2 + … 
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