COM S 485 Lecture 5 Notes February 1, 2006 Scribe: Byron Roberts

Second Moment Method

Disappearance of Isolated Vertices

As p increases, there is a transition from collections of trees, to cycles, to the emergence of a giant component. As p increases further, isolated vertices are swept up by the giant component.

Let x be the number of isolated vertices.

$$p = c(\ln n)/n E(x) = n^{1-c}$$

The limit of E(x), as n goes to ∞ , is 0 if $c \ge 1$ and 1 if $c \le 1$.

Prob(x=0) = 1

*There is the possibility that, given a series of graphs, for the first graph $x = \infty$ while for the remaining graphs x = 0. The Second Moment Method will be used to rule out this possibility.

*if σ^2 is small, we should not have the above situation ($x = \infty$ for one graph, x = 0 for the others).

*First, a bit about Markov's Inequality and Chebyshev's Inequality:

Theorem: Markov's Inequality

Let x be a random variable that is nonnegative. Then, $P(x \ge a) \le E(x)/a$

$$E(x) = \int_{0}^{\infty} x P(x) dx = \int_{0}^{\infty} x P(x) dx + \int_{0}^{\infty} x P(x) dx$$

-if we throw the first integral away, we get a lower bound on E(x): $E(x) \ge \int_{0}^{x} xP(x)dx$

-x is always greater than a, so:

$$\int_{\mathbb{R}} x P(x) dx \ge a \int_{\mathbb{R}} x P(x) dx$$

$$P(x \ge a)$$

 $P(x \ge a) \le E(x)/a$

-replace a by bE(x): $P(x \ge bE(x)) \le E(x)/bE(x) = 1/b$

$$/P(x \ge bE(x)) \le 1/b$$

*We can get a tighter bound by taking into account the variance....

Theorem: Chebyshev's Inequality:

Let x be a random variable. Then the probability that $[|x-E(x)| \ge t\sigma] < 1/t^2$

*With Chebyshev's Inequality, we measure distance in terms of the standard deviation.

Proof: Prob[
$$|x - \mu| \ge t\sigma$$
] = Prob[$(x - \mu)^2 \ge t^2\sigma^2$]

Note: will sometimes use μ or m in place of E(x)

Apply Markov's Inequality:

$$Prob[(x - \mu)^{2} \ge t^{2}\sigma^{2}] \le E[(x - \mu)^{2}]/t^{2}\sigma^{2} = \sigma^{2}/t^{2}\sigma^{2} = 1/t^{2} \qquad (\sigma^{2} = E[(x - \mu)^{2}])$$

• $t^2\sigma^2$ is what was 'a' back in Markov's Inequality

Second Moment Method

$$Prob[|x - E(x)| \ge E(x)] \le \sigma^2/E^2(x)$$

 $(t = E(x)/\sigma \text{ and replace})$

Now clearly for a nonnegative random variable x:

$$\operatorname{Prob}(x=0) \leq \operatorname{Prob}[|x-\operatorname{E}(x)| \geq \operatorname{E}(x)] \leq \sigma^2/\operatorname{E}^2(x)$$

*We want to prove that P(x = 0), so need to show that $\sigma^2/E^2(x)$ goes to 0 (i.e. variance goes to 0 with respect to the expected value)

Under what conditions does $\sigma^2/E^2(x)$ go to 0?

$$\sigma^2 = E[(x-E(x))^2] = E(x^2) - 2E(x)E(x) + E^2(x) = E(x^2) - E^2(x)$$

$$\text{Prob}[|x - E(x)| \ge E(x)] \le \sigma^2 / E^2(x) = [E(x^2) - E^2(x)] / E^2(x) = E(x^2) / E^2(x) - 1$$

If $E(x^2)$ is asymptotically less than or equal to $E^2(x)$, then Prob(x = 0) goes to 0

Back to the disappearance of isolated vertices: applying the Second Moment Method:

x= number of isolated vertices

Prob
$$(x = 0)$$
 \longrightarrow $E(x^2) \le E^2(x)$

-need to calculate value of x^2

$$x = x_1 + x_2 + \dots + x_n$$
 $x_i = 1$ if the vertex is isolated, 0 otherwise

$$E(x^{2}) = \sum_{i=1}^{n} E(x_{i}^{2}) + \sum_{i\neq j} (x_{i}x_{j}) = \sum_{i\neq j}^{n} E(x_{i}) + n(n-1)E(x_{1}x_{2}) = E(x) + n(n-1)(1-p)^{2(n-1)-1}$$

Probability that x_1 is isolated = $(1-p)^{n-1}$ Probability that x_2 is isolated is the same as above, except don't count the edge between x_1 and x_2 twice

Now
$$E(x^2)/E^2(x) = 1/E(x) + [n(n-1)/n^2][(1-p)^{2(n-1)-1}/(1-p)^{2(n-1)}]$$

$$E(x^2)/E^2(x) = 1/E(x) + 1/(1-p) = 1/n(1-p)^{n-1} + 1/(1-p)$$
 (E(x) = n(1-p)ⁿ⁻¹)

For p= $c(\ln n)/n$ and c < 1: E(x) goes to ∞

$$E(x^2)/E^2(x) = 1/n^{1-c} + 1/(1-(c(\ln n)/n)) = 1$$

Thus, by the Second Moment Method, can claim that Prob(x = 0) goes to 0