
CS485 Lecture Notes: 5/3/06     Scribe: David Lin 

 

Preface for Friday 

 

Say we were working for the Census Borough and had some data in the form of age-

salary pairs (data points are (age, salary)).  We want to be able to answer questions about 

the database that cut out rectangular sections of the data (when graphed).  For example, 

“How many people have a salary between 10 and 20 that have ages between 20 and 30?”  

We want to be able to obtain a sample of the full dataset that is representative enough for 

us to accurately answer such questions.     

 

This topic will be discussed in more detail on Friday, 5/5/06. 

 

Review of Collaborative Filtering 

 

Recall our topic from last class.   

 

How do we measure the goodness of a collaborative filtering algorithm?   

 

One possibility is to measure the Utility of the algorithm.  The Utility of an algorithm is 

the sum over all users of the probability that a user would purchase the item 

recommended.  Note: the probability of a user buying an item is independent of our 

recommendation.   

 

How do we compare algorithms? 

 

We can examine the worst case over all settings (probability matrices), which is the ratio: 
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Theorem:  Assume sample size s , number of items each user buys in a transaction, is 

equal to 2, all items in a category are equally likely, and ALG is any algorithm. 
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Sketch of the proof for 2): 

 

In the worst case, VRC does as well as any algorithm (but on other data, some other 

algorithm could do better).   

 

 

 



At some point in our proof (recall lecture on 5/1/06), we had a ratio: 
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However, examine the following: 
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The ratio of one element changing does change the ratio of the entire sum.  Instead, we 

fix every ratio to be the minimum ratio of elements in the sum, which is what we claimed 

in the proof.  For the rest of the proof, pick a certain “bad” distribution to show equality.  

 

Another Algorithm for Collaborative Filtering 

 

Suppose we have matrices PWA =  

Suppose we also know W , the probabilities of an item given a category. 

Let u be a row of A  (the probabilities of buying each item for a specific user) 

Let u~ be an estimate for u based on s purchases by that user. 

Clearly the row of A is in a space spanned by W , but it is not likely that the estimate is in 

the space spanned by W . 

 

How do we project u~  into the space spanned by W ?  

 

Orthogonally (Spectral method)?  This method would minimize the squared error 

between u and u~ .  

 

However, we’re mainly interested in the entries in uwith maximum probability.  We 

only care about u~ ’s error among the top elements (most probable elements) of u , since 

these are the ones we would recommend.  We want each component of u~  to be close in 

value to the corresponding component of u  (which does not necessarily minimize total 

error).   

 

Pseudo Inverse 

 

For the inverse of W , it is true that xxWW =−1 for any x . 

For the pseudo inverse, we only require xxWW =−1 for x in the space of W . 

 

What is the value of uWWuuuWW ~)~( 11 −− −=− ?  How close are u and uWW ~1− ? 

 

We would like each component of uWW ~1−  to be within ε of uwith high probability.   

What is the bound for )~( uuvT −  if the maximum component of v  is bounded by some 

constant B ?  ( =B max element of 1−WW ) 



∑
=

=
s

i

iu
s

u
1

1~   iu  is an indicator variable for the i th sample 

∑
=

=
s

i

i

TT uv
s

uv
1

1~  sum of independent random variables that are bounded by the 

elements of Tv  

 

Using Chebyshev’s Inequality: 
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We want to pick 1−W such that the largest element in 1−W  is small (→ B is small) to keep  

this bound tight.  We can use linear programming to optimize 1−W . 

 

If we had used the Spectral method from earlier: 
min

1

λ
 is the largest element in 1−W . 

Instead we find that the maximum element in 1−W can be bounded by the following: 
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 +W  is the largest element in W  

 

This algorithm differs much from our previous approach (where we simply picked some  

rules to follow based on the maximum probable category for a user).  Instead, we are  

trying to generate an estimate of the user’s probability of buying each item based upon  

the existing purchase data we have for all users, which is represented in W . 


