Lecturer: Prof. John Hopcroft
Scribe: Jang Ho Kim
May 1, 2006

## Lecture 39

## How do you evaluate an algorithm for collaborative filter?

o Utility - sum over all users of the probability that user will buy recommended item
o Optimum algorithm, OPT, would recommend the highest probability item for each user.
o Utility of OPT, $\Pi(\mathrm{OPT})=\sum_{\text {user }} \max _{\text {item }} P_{\text {item }}$
(look at each row, take the highest probability and take the sum)
o Simple case:
Consider two categories, $\mathrm{c}_{1}$ and $\mathrm{c}_{2}$, each user buys two items. All items in a category are equally likely. Take the sum over all users. Category $\mathrm{c}_{1}$ is preferred.
Graph: items are vertices and users are edges
User is $\mathrm{c}_{1}$ edge $\rightarrow$ recommend any item in $\mathrm{c}_{1}$
(since all items in $\mathrm{C}_{1}$ are equally likely)
User is cross edge $\rightarrow$ if $\mathrm{c}_{1}>\mathrm{c}_{2}$ then recommend $\mathrm{c}_{1}$ Otherwise, either
User is $\mathrm{c}_{2}$ edge $\rightarrow$ depends on structure of matrix
o To consider which algorithm is better consider the following in worst case.

$$
\min _{\text {data }} \frac{\Pi(\mathrm{ALG})}{\Pi(\mathrm{OPT})}
$$

o Sample size: s
Number of users: m
Number of items: n
Number of categories: k
o No algorithm can do better than $\frac{2}{\sqrt{k}+1}$
o Theorem: For sample size $s=2$, for any ALG,
i) $\min _{\text {data }} \frac{\Pi(\mathrm{ALG})}{\prod(\mathrm{OPT})} \leq \frac{2}{\sqrt{k}+1}$
ii) $\min _{\text {data }} \frac{\Pi(\mathrm{VRC})}{\prod(\mathrm{OPT})} \leq \frac{2}{\sqrt{k}+1} \quad$ (VRC $=$ vote randomly)

Proof: $\Pi(\mathrm{OPT})=\sum_{u} \max _{i} P_{i}(u)$
Utility for VRC:

- $\quad \mathrm{c}_{\mathrm{i}}$ edge occurs with probability $P_{i}^{2}(u)$ : utility $P_{i}(u)$
- cross edge occurs with probability $P_{i}(u) P_{j}(u):$ utility $\frac{P_{i}(u)+P_{j}(u)}{2}$

$$
\begin{aligned}
& \sum_{u}\left[\sum_{i} P_{i}^{3}(u)+\sum_{i \neq j} P_{i}(u) P_{j}(u) \frac{P_{i}(u)+P_{j}(u)}{2}\right] \\
& =\sum_{u}\left[\sum_{i} P_{i}^{3}(u)+\sum_{i \neq j} \frac{P_{i}^{2}(u) P_{j}(u)+P_{i}(u) P_{j}^{2}(u)}{2}\right] \\
& =\sum_{u}\left[\sum_{i} P_{i}^{3}(u)+\sum_{i \neq j} \frac{P_{i}^{2}(u) P_{j}(u)}{2}+\sum_{i \neq j} \frac{P_{i}(u) P_{j}^{2}(u)}{2}\right] \\
& =\sum_{u}\left[\sum_{i} P_{i}^{3}(u)+\sum_{\substack{i, j \\
i \neq j}} P_{i}^{2}(u) P_{j}(u)\right] \\
& =\sum_{u}\left[\sum_{i} P_{i}^{3}(u)+\sum_{i} P_{i}^{2}(u) \sum_{\substack{j \\
i \neq j}} P_{j}(u)\right] \\
& =\sum_{u}\left[\sum_{i} P_{i}^{3}(u)+\sum_{i} P_{i}^{2}(u)\left(1-P_{i}(u)\right)\right] \\
& =\sum_{u} \sum_{i} P_{i}^{2}(u)
\end{aligned}
$$

$$
\frac{\Pi(\mathrm{VRC})}{\prod(\mathrm{OPT})}=\frac{\sum_{u} \sum_{i} P_{i}^{2}(u)}{\sum_{u} \max _{i} P_{i}(u)} \quad \text { Want to minimize }
$$

Let $P_{m}(u)$ be maximum for user $u$.
Maximum occurs for vector, $\left(P_{m}, \frac{1-P_{m}}{k-1}, \frac{1-P_{m}}{k-1}, \cdots, \frac{1-P_{m}}{k-1}\right)$
For each user $u$, let $m$ be the value of $i$ for which $P_{i}(u)$ is maximized.
Then $\frac{\Pi(\mathrm{VRC})}{\prod(\mathrm{OPT})}$ is minimized for each $u$ if $\sum_{i} P_{i}{ }^{2}(u)$ is minimized subject to keep $P_{m}(u)$ fixed. This occurs if $P_{i}(u)=P_{j}(u)$ for all $i$ and $j$ not equal to $m$.
Now, $\frac{\Pi(\mathrm{VRC})}{\prod(\mathrm{OPT})}=\frac{\sum_{u}\left[P_{m}^{2}(u)+\left(\frac{1-P_{m}(u)}{k-1}\right)^{2}(k-1)\right]}{\sum_{u} P_{m}(u)}$

