CS 485 - Lecture 38

Saudia Ooyshee

May 2, 2006

A store might tell you what you want to buy and we have this model $A=P W$.

Nice thing is, we could get data for the matrix W from all users assuming we knew what the categories were. Now question is how do we determine categories? We don't want to deal with the various number of items a customer buys. So, we are going to go thorough the cash register and if a customer buys only 1 item, we are going to throw that receipt away. If a customer buys 2 or more items, we are going to randomly pick 2 items and say that constitues the purchase. So, we are going to assume every customer always buys 2 items.

Sample size $s=2$; This is number of items purchased in a transaction.
$\#(i)=$ number of times i purchased
$\#(i, j)=$ number of times pair (i, j) purchased
Do i and j belong in same category?

$$
\begin{aligned}
& \text { freq of } i=\sum_{u} P_{u c(i)} W_{c(i) i}=W_{c(i) i} \sum_{u} P_{u c(i)} \\
& \text { freq of pair }(i, j)=\sum_{u} P_{u c(i)} W_{c(i) i} P_{u c(j)} W_{c(j) j}
\end{aligned}
$$

Note: Difference in order you do the summation.
We want to consider two vectors - x and y.

$$
\begin{aligned}
& x=\left(P_{1 c(i)}, P_{2 c(i)}, \cdots, P_{m c(i)}\right) \\
& y=\left(P_{1 c(j)}, P_{2 c(j)}, \cdots, P_{m c(j)}\right)
\end{aligned}
$$

If i and j are in the same category then $x=y$. If x and y are not close to parallel then categories i and j are distinguishable.

$$
\frac{E^{2}(\#(i, j))}{E(\#(i, i)) E(\#(j, j))}=\frac{\left(W_{c(i) i} W_{c(j) j} \sum_{u} P_{u c(i)} P_{u c(j)}\right)^{2}}{\left[W_{c(i) i}^{2} \sum_{u} P_{u c(i)} P_{u c(i)}\right]\left[W_{c(j) j}^{2} \sum_{u} P_{u c(j)} P_{u c(j)}\right]}
$$

$$
\begin{gathered}
=\frac{(x \times y)^{2}}{(x \times x)(y \times y)} \\
=\frac{(x \times y)^{2}}{x^{2} y^{2}} \\
=\cos ^{2} \theta
\end{gathered}
$$

θ is the angle between x and y. If they are same $\cos ^{2} \theta$ will be 1 ; if they are not identical then cosine will be something significantly less than 1 .

Example

$$
P W=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \underbrace{}_{(a} \quad b \quad c_{c} \quad d \quad e \quad c): \begin{array}{cccccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{array}) .
$$

Assume that each of the three buyers visists the store equally often.

$$
\left.\begin{array}{rl}
\operatorname{Prob}(a) & =\frac{1}{3} \times 1 \times \frac{1}{3}+\frac{1}{3} \times 0 \times \frac{1}{3}+\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \\
- & a \\
-- & b \\
-- & c \\
-- & d \\
-- & -- \\
\operatorname{Prob} & \frac{1}{6}
\end{array} \frac{1}{6}\right)
$$

If things were statistically independent, the probability that some pair was chosen is given by the table below:

	a	b	c	d	e	f
a	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{24}$	$\frac{1}{48}$	$\frac{1}{48}$
b						
c						
d						
e						
f						

But if we look at the cash register receipts, we will find out that this is not the frequency of the pair.

For ordered pair: What's the probability of pair (d, e) ?

$$
\begin{gathered}
\operatorname{Prob}[(d, e)]=\frac{1}{3} \times 0 \times 0+\frac{1}{3} \times\left(1 \times \frac{1}{2}\right) \times\left(1 \times \frac{1}{4}\right)+\frac{1}{3} \times\left(\frac{1}{2} \times \frac{1}{2}\right) \times\left(\frac{1}{2} \times \frac{1}{4}\right) \\
=\frac{1}{24}+\frac{1}{96}=\frac{5}{96} \\
\operatorname{Prob}[(a, d)]=\frac{1}{9 \times 8} \\
\operatorname{Prob}[(d, d)]=\frac{5}{3 \times 16}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Prob}[(e, e)]=\frac{5}{3 \times 64} \\
& \operatorname{Prob}[(a, a)]=\frac{5}{3 \times 36} \\
& \operatorname{Prob}[(d, e)]=\frac{5}{3 \times 32}
\end{aligned}
$$

Are d and e in the same category?

$$
\frac{P^{2}[(d, e)]}{P[(d, d)] \times P[(e, e)]}=\frac{\left(\frac{5}{3 \times 32}\right)^{2}}{\left(\frac{5}{3 \times 16}\right)\left(\frac{5}{3 \times 64}\right)}=1
$$

So, d and e are in the same category.
Are a and d in the same category?

$$
\frac{P^{2}[(a, d)]}{P[(a, a)] \times P[(d, d)]}=\frac{\left(\frac{1}{9 \times 8}\right)^{2}}{\left(\frac{5}{3 \times 36}\right)\left(\frac{5}{3 \times 16}\right)}=\frac{1}{25}
$$

So, a and d are in different category.

Some Recommendation Algorithms

Continuing to use a sample size of 2 , we can build a graph where the vertices represent the items we have and each edge represents a user/transaction where the end points of the edge are the items that the user bought. For now, assume that there are 2 disjoint categories, C_{1} and C_{2}, and all items in a category are equally likely. Without lost of generality, also assume that C_{1} is preferred over C_{2} (or that they are equally preferred).

Neighbor Algorithm: If a user selects items a and b, look for another user who selected either a or b, and recommend the other item that the second user selected.

Voting Algorithm: Recommend item c such that the number of times users select (a, c) or (b, c) is maximized over all c.

Vote In Cluster (VIC): If a user selects two items in C_{1}, let's call this a C_{1}-edge. If the items a user selects are in different categories, call that a cross-edge. For each edge, if it's a C_{1}-edge or cross-edge, vote for C_{1}. Otherwise, vote for C_{2}. Recommend an item from the category that gets the most votes.

Vote Out of Category (VOC): Vote for C_{1} no matter what purchase was.

Vote Randomly (VRC): For a C_{1} edge, vote for C_{1}. Otherwise, vote randomly.

