CS 485 - Lecture 35

Olga Belomestnykh and Kareem Amin

21 April, 2006

Recall:

Markov's inequality: $Prob(x \ge am) \le \frac{1}{a}$ Chebyshev's inequality: $Prob(|x - m| \ge a\sigma) \le \frac{1}{a^2}$

Chernoff bounds:

Let $x_1, x_2, ..., x_n$ be independent random variables from distribution:

$$x_i = 1 \text{ with probability } p$$

 $0 \text{ with probability } (1-p)$

Consider
$$s = \sum_{i=1}^{n} x_i$$
. $E(x_i) = p$. Define $m = E(s) = E(\sum x_i) = np$.

$$\underline{\text{Theorem:}} \text{ For any } \delta > 0, \quad Prob\left[s > (1+\delta)m\right] \leq \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^m.$$

<u>Proof:</u> For any $\lambda > 0$

$$\begin{array}{lcl} Prob\left[s>(1+\delta)m\right] & = & Prob\left[e^{\lambda s}>e^{\lambda(1+\delta)m}\right] \\ & \leq & \frac{E(e^{\lambda s})}{e^{\lambda(1+\delta)m}} & by \; Markov's \; inequality \end{array}$$

First, cosider the numerator:

$$E(e^{\lambda s}) = E(e^{\lambda \sum x_i}) = E(\prod e^{\lambda x_i}) = \prod E(e^{\lambda x_i})$$

$$= \prod (e^{\lambda}p + 1 - p) = \prod [(e^{\lambda} - 1)p + 1]$$

$$e^x = 1 + x + \frac{x^2}{2} + \dots \Rightarrow e^{\lambda} \ge 1 + x$$

$$Let \quad x = p(e^{\lambda} - 1) \quad then$$

$$E(e^{\lambda s}) \le \prod e^{p(e^{\lambda} - 1)}$$

Set $\lambda = ln(1 + \delta)$.

$$Prob\left[s > (1+\delta)m\right] \leq \frac{\prod e^{p(e^{\lambda}-1)}}{e^{\lambda(1+\delta)m}} = \frac{\prod e^{p\delta}}{(1+\delta)^{1+\delta}m}$$
$$= \frac{e^{pn\delta}}{(1+\delta)^{(1+\delta)m}} = \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^m$$

Therefore, $Prob\left[s>(1+\delta)m\right]\leq \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^m$. Simplify bound:

• very small δ

$$ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4$$

$$(1+x)ln(1+x) = x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{12} + \dots$$

$$ln(1+\delta)^{1+\delta} = (1+\delta)ln(1+\delta) \approx \delta + \frac{\delta^2}{2} - \frac{\delta^3}{6} + \dots$$

$$(1+\delta)^{1+\delta} = e^{\delta + \frac{\delta^2}{2} - \frac{\delta^3}{6} + \dots} \approx e^{-\frac{\delta^2}{2}} \quad for small \ \delta$$

• large δ

$$Prob \left[s \ge (1+\delta)m \right] \le \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right]^m$$

$$\le \left[\frac{e}{1+\delta} \right]^{(1+\delta)m}$$

$$\le \left(\frac{1}{2} \right)^{(1+\delta)m} \quad for \ \delta \ge 2e - 1$$

What about $p(x) = \frac{1}{\pi} \frac{1}{1+x^2}$? The mean for this function can be defined as $m = a \xrightarrow{\lim} \infty \int_{-a}^{a} x p(x) dx$. However, this function does not have a variance.