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Recall:
Markov’s inequality: Prob(z > am) < %
Chebyshev’s inequality: ~ Prob(lz — m| > ao) < 25

Chernoff bounds:

Let 1, x9, ..., x, be independent random variables from distribution:

x; = 1 with probability p
0 with probability (1 — p)

Consider s = Y | x;. E(z;) = p. Define m = E(s) = E(}_ z;) = np.

Theorem: For any § > 0, Prob[s > (14 )m] < {ﬁ} .

Proof: For any A > 0

Prob[s > (14 0)m]

Prob [6)‘3 > e’\(H‘s)m}

E(e)‘s)

G by Markov's inequality
e

First, cosider the numerator:
E(e*) = E(=")=E(]eM) =]] E(e*)
= JJr+1-p) =] -1)p+1]
22
ele—l—as—i—?—i—... = A>142

Let z =p(e* —1) then

E(e)\s) < Hep(ekfl)



Set A = In(1+4).
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Therefore, Prob[s > (14 0)m] < [(Hffm

} . Simplify bound:
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What about p(z) = +—25? The mean for this funciton can be defined as m =a LIS ffa xp(x)dx. However,

T 1422
this function does not have a variance.



