Review: High Dimensional Data

For high dimensions, almost all the volume of the unit cube is outside the unit sphere.
How far apart can 2 points be on a:

1) sphere: 2
2) cube: $2 \sqrt{d}$

All the probability will be found in the shaded area (the annulus).

Suppose points are placed at random and we want to calculate the distance between points.

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& y=\left(y_{1}, y_{2}, \ldots, y_{d}\right) \\
& \operatorname{dist}^{2}(x, y)=\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}
\end{aligned}
$$

Deviation of sum of random variables from expected value of sum

$$
\operatorname{Pr} o b\left(\left\lvert\, \sum_{i=1}^{n} x_{i}-E\left(\sum_{i=1}^{n} x_{i} \mid \geq c\right) \leq e^{-\frac{2 c^{2}}{\sigma^{2}}}\right.\right.
$$

Another Problem:

How do you generate points at random on the surface of a sphere?

Possible Solution:
In 2-dimensions, you might try to generate points uniformly on a square (i.e. rand function in Matlab).

Solution:
Discard all points outside of circle and project remaining points onto surface.
Why does this method not work in high dimensions?
Most of the area of a hypercube will lie outside the sphere.

Generate points according to the following distribution:

$$
\left(x_{1}, x_{2}, \ldots, x_{d}\right) \quad e^{-\frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}{2}}=e^{-\frac{r^{2}}{2}}
$$

Then normalize the points:

$$
\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}}, \frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}}, \ldots, \frac{x_{d}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}}
$$

Now we want to know:

Generate two points on unit sphere.
After generating first point, rotate coordinate to place it on North Pole.
Generate $2^{\text {nd }}$ point.

$$
\begin{aligned}
& \text { dist }^{2}=\left(1-\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}}\right)^{2}+\left(\frac{x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}\right)+\ldots+\left(\frac{x_{d}^{2}}{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}\right) \\
& =1-\frac{2 x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}}+\left(\frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}\right)+\left(\frac{x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}\right)+\ldots+\left(\frac{x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}\right) \\
& =2-\frac{2 x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}}=2-2 x_{1}
\end{aligned}
$$

Clarification Question: Why did we rotate in this manner?

We wanted to make things easier to calculate the distance; we simply rotated the coordinate system.
$E\left(\right.$ dist $\left.^{2}\right)=2$
$E($ dist $)=\sqrt{2}$
Points on average are perpendicular.
Gaussian distribution used here. Depending on what distribution is used, there may or may not be an annulus.

Two Gaussians, points would be on 2 annuluses.
Pick 2 random points and calculate the distance between them.

Let $\delta=$ distance between vectors
Distance between points $=\sqrt{d^{2}-2}$

Question: What if spheres of radius \sqrt{d} ?

If two points generated by some Gaussian, they will be $\sqrt{2 d}$ distance apart. If two points generated by different Gaussians, they will be $\sqrt{\delta^{2}+2 d}$

To determine which Gaussian generated, calculate all pairwise distances and compare distance to $\sqrt{2 d}$ or $\sqrt{\delta^{2}+2 d}$

$$
\begin{aligned}
& \text { If } \sqrt{\delta^{2}+2 d} \geq \sqrt{2 d}+c \\
& \sqrt{\delta^{2}+2 d}=\sqrt{2 d}\left(\sqrt{2+\frac{\delta^{2}}{4 d}}\right)=\sqrt{2 d}\left(1+\frac{\delta^{2}}{4 d}+\ldots\right) \geq \sqrt{2 d}-c \\
& \sqrt{2 d}\left(\frac{\delta^{2}}{4 d}\right) \geq c \\
& \delta^{2} \geq \frac{c^{*} 4 d}{\sqrt{2} \sqrt{d}} \geq \frac{4 c}{\sqrt{2}} \sqrt{d} \\
& \delta \geq c^{\prime *} d^{1 / 4}
\end{aligned}
$$

But we can do better than this.

