CS 485 Lecture 32 April 14, 2006

Scribe: Jon Guarino & Kevin Markman Lecturer: Professor John Hopcroft

Today we looked at high-dimensional data, trying to create an intuition that would work for it. Most of
us currently imagine things in 2 or 3-dimensions, but things often change as dimensionality increases.

1 High Dimensions

The volume of a cube increases as the number of dimensions increases.

The volume of a sphere, on the other hand, does not necessarily grow as the number of dimensions
increases. As a matter of fact, the volume increases until 11 dimensions and then starts decreasing, ap-
proaching a volume of zero as the number of dimensions approaches infinity!

2 Volume of Sphere

We can represent the volume of a sphere in d dimensions as:
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We can transform this into polar coordinates as follows:
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We know that [ dQ is just the area of d, so taking the integral we get:
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We can make a table to show how area relates to volume:
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Now let us define I(d):
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Where



We can therefore see that:

and:

2wt
g



