Review from Lecture 30

Shingle: subsequence of length k. Given shingles, we most likely can reconstruct a sequence. A real life example would be that of a tree. Suppose we wanted to store the tree with a smaller representation, we could define the shingle to be a tree of width 3 and depth 2.

New Problem: How do you find the number of distinct elements in a data stream?

Application:

Given a list of credit card transactions, how many distinct numbers are there (namely, unique customers)?

What we need are the credit card numbers and a User Identification.

$a_1, a_2, a_3, \ldots, a_n$ \hspace{1cm} n integers in range 1 to m (i.e. credit card #'s)

One solution:

Keep a vector 1 to m, set to 1 if the integer is seen

```
0 0 0 1 1 0 0 0
```

The problem with this is that it requires m bits of memory and every number must be processed.

Another Solution:

If the number of distinct elements is small:

Create a hash function:

d is the # of distinct elements

$d \times \log(m)$ where $\log(m)$ is how long it takes to store each of the d distinct elements.

We may simply want to know, are there t distinct customers?

An approximation to this may be sufficient. Suppose we had 38, 451 – we could take the range from 35,000 to 40,000 as sufficient knowledge.

Approximation Algorithm:

if (# of distinct elements \(\geq 2t \))

the algorithm answers yes with probability ≥ 0.865

if (# of distinct elements < t)

the algorithm answers yes with probability ≤ 0.64
Let $h : \{1, 2, \ldots, m\} \rightarrow \{1, 2, \ldots, t\}$

set of credit card numbers

Compute $h(a_i)$ for each element in the sequence

Answer yes if for any i, $h(a_i) = 1$

Proof of this algorithm:

For each i, the probability that $h(a_i) = 1$ is $\frac{1}{t}$

If there are d distinct elements, what is the probability none of them are hashed to 1?

$$(1 - \frac{1}{t})^d$$

Aside: As d increases, $(1 - \frac{1}{t})^d$ decreases.

if $(d \leq t)$

the probability that the algorithm answers no is $\geq (1 - \frac{1}{t})^t = \frac{1}{e} \approx 0.36$

Probability of yes $\leq 1 - \frac{1}{e} = 0.64$

if $(d > 2t)$

probability the algorithm answers no is $(1 - \frac{1}{t})^d \leq (1 - \frac{1}{t})^{2t} = \left(\frac{1}{e}\right)^2 \approx 0.135$

\Rightarrow probability the algorithm answers yes $\geq 1 - 0.135 \approx 0.865$
Singular Value Decomposition

\[A = U \Sigma V' \]
\[A^k = U \Sigma^k V' \]

1) May not be able to interpret rows and columns. Possibility of negative elements.
2) A likely to be sparse, \(A^k \) likely to be dense.

\[
\begin{pmatrix}
 A \\
\end{pmatrix}
= \begin{pmatrix}
 \Lambda \\
\end{pmatrix}
(\Xi) (R)
\]

\[
|A - C \sum R^j|^2 \leq \frac{1}{1 - \varepsilon} \left| A - A^k \right|^2 + \varepsilon |A|^2
\]

\[
|A|^2_F = \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2
\]