CS 485 - Lecture 31 — April 12, 2006
By Hugh Zhang and Johnson Nguyen

Review from Lecture 30
Shingle: subsequence of length k. Given shingles, we most likely can reconstruct
a sequence. A real life example would be that of a tree. Suppose we wanted to
store the tree with a smaller representation, we could define the shingle to be a
tree of width 3 and depth 2.

New Problem: How do you find the number of distinct elements in a data stream?

Application:
Given a list of credit card transactions, how many distinct numbers are there
(namely, unique customers)?
What we need are the credit card numbers and a User Identification.

ap, ap, as, ..., dy n integers in range 1 to m (i.e. credit card #’s)

One solution:
Keep a vector 1 to m, set to 1 if the integer is seen
00011000

The problem with this is that it requires m bits of memory and every number must be
processed.

Another Solution: Qm\o)
If the number of distinct elements is small: o
Create a hash function: +
d is the # of distinct elements Xorn €S S
d*log(m) where log(m) is how long it takes to store each 35000 LWoooo

of the d distinct elements.

We may simply want to know, are there ¢ distinct customers?
An approximation to this may be sufficient. Suppose we had 38, 451 — we could take the
range from 35,000 to 40,000 as sufficient knowledge.

Approximation Algorithm:
if (# of distinct elements > 2t)
the algorithm answers yes with probability = 0.865
if (# of distinct elements < t)
the algorithm answers yes with probability < 0.64

CS 485 - Lecture 31 — April 12, 2006
By Hugh Zhang and Johnson Nguyen

Leth: {1,2,....m} = {1,2,...t}

N\

set of credit card numbers

Compute h(a;) for each element in the sequence sequence
Answer yes if for any 1, h(a;) = 1
Proof of this algorithm:
For each i, the probability that h(a;) = 1 is l
t
If there are d distinct elements, what is the probability none of them are hashed to 1?
1
(1--)°
t
#+k Agide: As d increases, (1 —l)d decreases.***
t

if(d <t
the probability that the algorithm answers nois = (1— 1)’ = lz 0.36
t e

Probability of yes <1-— 1 = (.64
e
if (d > 2¢)
probability the algorithm answers no is (1 —%)‘1 <(—%)2’ = (l)2 ~0.135
e

=> probability the algorithm answers yes = 1 —0.135 = 0.865

CS 485 - Lecture 31 — April 12, 2006
By Hugh Zhang and Johnson Nguyen

Singular Value Decomposition

A=UXV'
Ak :Uzkvr

1) May not be able to interpret rows and columns. Possibility of negative elements.
2) A likely to be sparse, A* likely to be dense.

(2R
A\ = C

M—czRf

isT%jA—Aﬂ+q4§

A =+ 2+t 2

