
CS 485 – Lecture 31 – April 12, 2006
By Hugh Zhang and Johnson Nguyen

Review from Lecture 30

Shingle: subsequence of length k. Given shingles, we most likely can reconstruct

a sequence. A real life example would be that of a tree. Suppose we wanted to

store the tree with a smaller representation, we could define the shingle to be a

tree of width 3 and depth 2.

New Problem: How do you find the number of distinct elements in a data stream?

Application:

Given a list of credit card transactions, how many distinct numbers are there

(namely, unique customers)?

What we need are the credit card numbers and a User Identification.

a1, a2, a3, …, an n integers in range 1 to m (i.e. credit card #’s)

One solution:
Keep a vector 1 to m, set to 1 if the integer is seen

0 0 0 1 1 0 0 0

� m �

The problem with this is that it requires m bits of memory and every number must be

processed.

Another Solution:

If the number of distinct elements is small:

 Create a hash function:

 d is the # of distinct elements

d*log(m) where log(m) is how long it takes to store each

of the d distinct elements.

We may simply want to know, are there t distinct customers?

An approximation to this may be sufficient. Suppose we had 38, 451 – we could take the

range from 35,000 to 40,000 as sufficient knowledge.

Approximation Algorithm:
if (# of distinct elements ≥ 2t)

the algorithm answers yes with probability ≥ 0.865

if (# of distinct elements < t)

the algorithm answers yes with probability ≤ 0.64

CS 485 – Lecture 31 – April 12, 2006
By Hugh Zhang and Johnson Nguyen

Let h: {1,2,…,m} � {1,2,…t}

Compute h(ai) for each element in the sequence sequence

Answer yes if for any i, h(ai) = 1

Proof of this algorithm:

For each i, the probability that h(ai) = 1 is
t

1

If there are d distinct elements, what is the probability none of them are hashed to 1?

d

t
)

1
1(−

***Aside: As d increases, d

t
)

1
1(− decreases.***

if (d ≤ t)

the probability that the algorithm answers no is ≥
et

t 1
)

1
1(=− ≈ 0.36

Probability of yes 64.0
1

1 ≈−≤
e

if (d > 2t)

probability the algorithm answers no is 135.0)
1

()
1

1()
1

1(22
≈=−≤−

ett

td

=> probability the algorithm answers yes ≥ 1 – 0.135 ≈ 0.865

set of credit card numbers

CS 485 – Lecture 31 – April 12, 2006
By Hugh Zhang and Johnson Nguyen

Singular Value Decomposition

t

VUA ∑=
tkk

VUA ∑=

1) May not be able to interpret rows and columns. Possibility of negative elements.

2) A likely to be sparse, A
k
 likely to be dense.

22

2

2

1

2

22

...

1

1

nF

F

k

F

t

A

AAARCA

λλλ

ε
ε

+++=

+−
−

≤∑−

