
CS 485 – Lecture 31 – April 12, 2006 
By Hugh Zhang and Johnson Nguyen 

Review from Lecture 30 

Shingle: subsequence of length k.  Given shingles, we most likely can reconstruct 

a sequence.  A real life example would be that of a tree.  Suppose we wanted to 

store the tree with a smaller representation, we could define the shingle to be a 

tree of width 3 and depth 2. 

 

New Problem: How do you find the number of distinct elements in a data stream? 

 

Application:   

Given a list of credit card transactions, how many distinct numbers are there 

(namely, unique customers)? 

What we need are the credit card numbers and a User Identification. 

 

a1, a2, a3, …, an  n integers in range 1 to m  (i.e. credit card #’s) 

 

 

One solution:  
Keep a vector 1 to m, set to 1 if the integer is seen 

0 0 0 1 1 0 0 0 

�  m  � 

The problem with this is that it requires m bits of memory and every number must be 

processed. 

 

 

Another Solution: 

If the number of distinct elements is small: 

 Create a hash function: 

  d is the # of distinct elements 

   

 

d*log(m) where log(m) is how long it takes to store each 

of the d distinct elements. 

 

We may simply want to know, are there t distinct customers? 

An approximation to this may be sufficient.  Suppose we had 38, 451 – we could take the 

range from 35,000 to 40,000 as sufficient knowledge. 

 

 

Approximation Algorithm: 
if (# of distinct elements ≥  2t) 

the algorithm answers yes with probability ≥  0.865 

if (# of distinct elements < t) 

the algorithm answers yes with probability ≤  0.64 
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Let h: {1,2,…,m}  � {1,2,…t}  

 

 

 

 

Compute h(ai) for each element in the sequence sequence 

Answer yes if for any i, h(ai) = 1 

 

Proof of this algorithm: 

For each i, the probability that h(ai) = 1 is 
t

1
 

If there are d distinct elements, what is the probability none of them are hashed to 1? 
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the probability that the algorithm answers no is ≥  
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if (d > 2t) 

probability the algorithm answers no is 135.0)
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=> probability the algorithm answers yes ≥  1 – 0.135 ≈ 0.865 

set of credit card numbers 
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Singular Value Decomposition 

 
t
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1) May not be able to interpret rows and columns.  Possibility of negative elements. 

2) A likely to be sparse, A
k
 likely to be dense. 
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