## Review from Lecture 30

Shingle: subsequence of length $k$. Given shingles, we most likely can reconstruct a sequence. A real life example would be that of a tree. Suppose we wanted to store the tree with a smaller representation, we could define the shingle to be a tree of width 3 and depth 2.

## New Problem: How do you find the number of distinct elements in a data stream?

## Application:

Given a list of credit card transactions, how many distinct numbers are there (namely, unique customers)?
What we need are the credit card numbers and a User Identification.
$a_{1}, a_{2}, a_{3}, \ldots, a_{n} \quad n$ integers in range 1 to $m$ (i.e. credit card \#'s)

## One solution:

Keep a vector 1 to $m$, set to 1 if the integer is seen

$$
\underset{\mathrm{O}}{\underline{0} \underline{0} \underline{1} \underline{1} \underline{0} \underset{\mathrm{~m}}{\rightarrow} \underline{0} \underline{0}}
$$

The problem with this is that it requires m bits of memory and every number must be processed.

## Another Solution:

If the number of distinct elements is small:
Create a hash function:
d is the \# of distinct elements
$d^{*} \log (m)$ where $\log (m)$ is how long it takes to store each
 of the distinct elements.

We may simply want to know, are there $t$ distinct customers?
An approximation to this may be sufficient. Suppose we had 38, 451 - we could take the range from 35,000 to 40,000 as sufficient knowledge.

## Approximation Algorithm:

if (\# of distinct elements $\geq 2 \mathrm{t}$ )
the algorithm answers yes with probability $\geq 0.865$
if (\# of distinct elements $<\mathrm{t}$ )
the algorithm answers yes with probability $\leq 0.64$

Let $\mathrm{h}:\{1,2, \ldots, \mathrm{~m}\} \rightarrow\{1,2, \ldots \mathrm{t}\}$


Compute $\mathrm{h}\left(\mathrm{a}_{\mathrm{i}}\right)$ for each element in the sequence sequence Answer yes if for any $\mathrm{i}, \mathrm{h}\left(\mathrm{a}_{\mathrm{i}}\right)=1$

## Proof of this algorithm:

For each i , the probability that $\mathrm{h}\left(\mathrm{a}_{\mathrm{i}}\right)=1$ is $\frac{1}{t}$
If there are $d$ distinct elements, what is the probability none of them are hashed to 1 ?

$$
\left(1-\frac{1}{t}\right)^{d}
$$

***Aside: As d increases, $\left(1-\frac{1}{t}\right)^{d}$ decreases.***
if $(\mathrm{d} \leq \mathrm{t})$
the probability that the algorithm answers no is $\geq\left(1-\frac{1}{t}\right)^{t}=\frac{1}{e} \approx 0.36$
Probability of yes $\leq 1-\frac{1}{e} \approx 0.64$
if $(\mathrm{d}>2 t)$
probability the algorithm answers no is $\left(1-\frac{1}{t}\right)^{d} \leq\left(1-\frac{1}{t}\right)^{2 t}=\left(\frac{1}{e}\right)^{2} \approx 0.135$
$=>$ probability the algorithm answers yes $\geq 1-0.135 \approx 0.865$

Singular Value Decomposition

$$
\begin{aligned}
& A=U \sum V^{t} \\
& A^{k}=U \sum^{k} V^{t}
\end{aligned}
$$

1) May not be able to interpret rows and columns. Possibility of negative elements.
2) A likely to be sparse, $A^{k}$ likely to be dense.

$$
\begin{aligned}
& (A)=(C)(R) \\
& \left(A-\left.C \sum R^{t}\right|_{F} ^{2} \leq \frac{1}{1-\varepsilon}\left|A-A^{k}\right|+\varepsilon|A|_{F}^{2}\right. \\
& |A|_{F}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}+\ldots+\lambda_{n}^{2}
\end{aligned}
$$

