CS 485 Lecture 3

Scribes: Ivan Han, Anand Bhaskar

Structure of Graphs as p Increases

Given a graph G(n, p), we note that p is a function of n. e.g. $p = \frac{1}{\log n}$, $\frac{1}{n^2}$, etc.

The structure of a large graph undergoes several phase transitions as *p* is increased:

Phase Transitions

1.
$$p = \frac{1}{n^2}$$
, $\frac{1}{n^{3/2}}$, $\frac{1}{n \log n}$

2.
$$p = \frac{1}{10n}$$
, $\frac{1}{2n}$

3.
$$p = \frac{1}{n}, \frac{2}{n}$$

$$4. \quad p = \frac{\log n}{4n}$$

$$5. \quad p = \frac{\log n}{n}$$

6.
$$p = \frac{1}{10}$$
, $\frac{1}{3}$, $\frac{1}{2}$

Observations

- p is of order o(1/n).
- Graphs have a number of components which are all trees (no cycles) and have size $\leq \log n$.
- p is of order $\Theta(1/n)$.
- Cycles begin to appear in the graph. All components are either trees or unicyclic with size $\leq \log n$.
- If p < 1/n, components have size $\leq \log n$.
- If p = 1/n, a giant component of size $n^{2/3}$ appears.
- If p > 1/n, a giant component has size cn, where c is a constant.
- As p increases further, the giant component absorbs all other smaller components.
- Graph contains only a giant component plus isolated vertices. All smaller components absorbed.
- Graph is connected (all isolated vertices absorbed).
- p is a constant.
- Graph almost surely has a diameter of 2.

Theorem: Given G(n, p) with p a constant independent of n, then the graph almost surely has a diameter of 2.

Proof: Pick any 2 vertices from the graph. Call them node 1 and 2:

Figure 1

We wish to find the probability finding a third node (node 3 in Fig.1) that is adjacent to both node 1 and 2.

Let x be the number of unordered pairs of vertices (u, v) such that there is no other vertex w adjacent to both u and v (we call such a (u, v) pair a bad pair). If there are no bad pairs, then the graph has diameter 2. In other words, if $E(x) \to 0$ as $n \to \infty$, then for large n, there are almost no graphs that are not of diameter 2.

(Note that the converse, i.e. if $E(x) \to \infty$ as $n \to \infty$, then all graphs will almost surely have bad pairs, is not true. Suppose we have graphs G_1 , G_2 , G_3 , G_4 , etc, and $x_1 \to \infty$, $x_2 \to 0$, $x_3 \to 0$, $x_4 \to 0$, etc as $n \to \infty$, then $E(x) \to \infty$ even though every other graph except G_1 has no bad pairs)

Next, number pairs of vertices from 1 to N = $\binom{n}{2}$. Let x_i be indicator variables where:

 $x_i = 0$ if ith pair of vertices is not bad 1 if ith pair of vertices is bad

x then is just $x_1 + x_2 + x_3 + ... + x_N$ and by linearity E(x) is simply $\sum_{i=1}^{N} x_i$. Furthermore,

since the expected value of each x_i are equal, E(x) can be simplified to $\binom{n}{2}E(x_I)$.

To find $E(x_I)$, we refer back to Fig.1. What is the probability that both node 1 and 2 is connected to node 3? p^2 . So the probability that both node 1 and 2 is not connected to node 3 is $(1-p^2)$. Finally, the probability that both node 1 and node 2 is not connected to all the other n-2 vertices (including node 3) is $(1-p^2)^{n-2}$. But this is just $E(x_I)$.

So,
$$E(x) = \binom{n}{2} E(x_I)$$
 (1)

$$= \binom{n}{2} (1 - p^2)^{n-2} \tag{2}$$

If $(1 - p^2)$ is a constant < 1, $E(x) \rightarrow 0$ as $n \rightarrow \infty$.