CS 485 Lecture 3

Scribes: Ivan Han, Anand Bhaskar

Structure of Graphs as \boldsymbol{p} Increases

Given a graph $\mathrm{G}(n, p)$, we note that p is a function of n. e.g. $p=\frac{1}{\log n}, \frac{1}{n^{2}}$, etc.

The structure of a large graph undergoes several phase transitions as p is increased:

Phase Transitions

1. $p=\frac{1}{n^{2}}, \frac{1}{n^{3 / 2}}, \frac{1}{n \log n}$
2. $p=\frac{1}{10 n}, \frac{1}{2 n}$
3. $p=\frac{1}{n}, \frac{2}{n}$
4. $p=\frac{\log n}{4 n}$
5. $p=\frac{\log n}{n}$
6. $p=\frac{1}{10}, \frac{1}{3}, \frac{1}{2}$

Observations

- p is of order $\mathrm{o}(1 / n)$.
- Graphs have a number of components which are all trees (no cycles) and have size $\leq \log n$.
- p is of order $\Theta(1 / n)$.
- Cycles begin to appear in the graph. All components are either trees or unicyclic with size $\leq \log n$.
- If $\mathrm{p}<1 / n$, components have size $\leq \log n$.
- If $p=1 / n$, a giant component of size $n^{2 / 3}$ appears.
- If $p>1 / n$, a giant component has size $c n$, where c is a constant
- As p increases further, the giant component absorbs all other smaller components.
- Graph contains only a giant component plus isolated vertices. All smaller components absorbed.
- Graph is connected (all isolated vertices absorbed).
- p is a constant.
- Graph almost surely has a diameter of 2.

Theorem: Given $\mathrm{G}(n, p)$ with p a constant independent of n, then the graph almost surely has a diameter of 2 .

Proof: Pick any 2 vertices from the graph. Call them node 1 and 2:

Figure 1
We wish to find the probability finding a third node (node 3 in Fig.1) that is adjacent to both node 1 and 2 .

Let x be the number of unordered pairs of vertices (u, v) such that there is no other vertex w adjacent to both u and v (we call such a (u, v) pair a bad pair). If there are no bad pairs, then the graph has diameter 2 . In other words, if $\mathrm{E}(x) \rightarrow 0$ as $n \rightarrow \infty$, then for large n, there are almost no graphs that are not of diameter 2.
(Note that the converse, i.e. if $\mathrm{E}(x) \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$, then all graphs will almost surely have bad pairs, is not true. Suppose we have graphs $G_{1}, G_{2}, G_{3}, G_{4}$, etc, and $x_{1} \rightarrow \infty, x_{2}$ $\rightarrow 0, x_{3} \rightarrow 0, x_{4} \rightarrow 0$, etc as $n \rightarrow \infty$, then $\mathrm{E}(x) \rightarrow \infty$ even though every other graph except G_{I} has no bad pairs)

Next, number pairs of vertices from 1 to $\mathrm{N}=\binom{n}{2}$. Let x_{i} be indicator variables where:
$x_{i}=0 \quad$ if $\mathrm{i}^{\text {th }}$ pair of vertices is not bad
1 if $\mathrm{i}^{\text {th }}$ pair of vertices is bad
x then is just $x_{1}+x_{2}+x_{3}+\ldots+x_{N}$ and by linearity $\mathrm{E}(x)$ is simply $\sum_{i=1}^{N} \mathrm{x}_{\mathrm{i}}$. Furthermore, since the expected value of each x_{i} are equal, $\mathrm{E}(x)$ can be simplified to $\binom{n}{2} \mathrm{E}\left(x_{1}\right)$.

To find $\mathrm{E}\left(x_{1}\right)$, we refer back to Fig.1. What is the probability that both node 1 and 2 is connected to node 3 ? p^{2}. So the probability that both node 1 and 2 is not connected to node 3 is $\left(1-p^{2}\right)$. Finally, the probability that both node 1 and node 2 is not connected to all the other $\mathrm{n}-2$ vertices (including node 3) is $\left(1-p^{2}\right)^{n-2}$. But this is just $\mathrm{E}\left(x_{I}\right)$.

$$
\begin{align*}
\text { So, } \mathrm{E}(x) & =\binom{n}{2} \mathrm{E}\left(x_{l}\right) \tag{1}\\
& =\binom{n}{2}\left(1-p^{2}\right)^{n-2} \tag{2}
\end{align*}
$$

If $\left(1-p^{2}\right)$ is a constant $<1, \mathrm{E}(x) \rightarrow 0$ as $n \rightarrow \infty$.

