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Structure of Graphs as p Increases 

Given a graph G(n, p), we note that p is a function of n. e.g. p = 
nlog
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The structure of a large graph undergoes several phase transitions as p is increased: 

 

Phase Transitions 
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� p is of order o( n1 ). 

� Graphs have a number of components which are all 

trees (no cycles) and have size ≤ log n. 

 

� p is of order Θ ( n1 ). 

� Cycles begin to appear in the graph. All components 

are either trees or unicyclic with size ≤ log n. 

 

� If p < n1 , components have size ≤ log n. 

� If p = n1 , a giant component of size 32
n  appears.  

� If p > n1 , a giant component has size cn, where c is a 

constant.  

� As p increases further, the giant component absorbs all 

other smaller components. 

 

� Graph contains only a giant component plus isolated 

vertices. All smaller components absorbed. 

 

� Graph is connected (all isolated vertices absorbed). 

 

 

� p is a constant. 

� Graph almost surely has a diameter of 2. 

 

 

Theorem:  Given G(n, p) with p a constant independent of n, then the graph almost surely has a 

diameter of 2. 

 

Proof: Pick any 2 vertices from the graph. Call them node 1 and 2: 

 

 

 

 

  

 



 

 

 

 

 

 

 

 
Figure 1 

 

We wish to find the probability finding a third node (node 3 in Fig.1) that is adjacent to 

both node 1 and 2. 

 

Let x be the number of unordered pairs of vertices (u, v) such that there is no other vertex 

w adjacent to both u and v (we call such a (u, v) pair a bad pair). If there are no bad pairs, 

then the graph has diameter 2. In other words, if E(x) → 0 as n → ∞, then for large n, 

there are almost no graphs that are not of diameter 2. 

 

(Note that the converse, i.e. if E(x) → ∞ as n → ∞, then all graphs will almost surely 

have bad pairs, is not true. Suppose we have graphs G1, G2, G3, G4, etc, and x1 → ∞, x2 

→ 0, x3 → 0, x4 → 0, etc as n → ∞, then E(x) → ∞ even though every other graph except 

G1 has no bad pairs) 

 

Next, number pairs of vertices from 1 to N = 

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. Let xi be indicator variables where: 

 

xi =  0  if i
th

 pair of vertices is not bad 

1 if i
th

 pair of vertices is bad 

 

x then is just x1 + x2 + x3 + … + xN and by linearity E(x) is simply ∑
=

N

i 1

ix . Furthermore, 

since the expected value of each xi are equal, E(x) can be simplified to 

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E(x1). 

 

To find E(x1), we refer back to Fig.1. What is the probability that both node 1 and 2 is 

connected to node 3? p
2
. So the probability that both node 1 and 2 is not connected to 

node 3 is (1 – p
2
). Finally, the probability that both node 1 and node 2 is not connected to 

all the other n – 2 vertices (including node 3) is (1 – p
2
)
n-2

. But this is just E(x1). 

 

So, E(x)  =  
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If (1 – p
2
) is a constant < 1, E(x) → 0 as n → ∞. 
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