CS 485 Notes
April 3 ${ }^{\text {rd }}, 2006$
Dan FitzGerald
dpf7
Back to Wigner's Semicircular Law:
Where we left off:
Think of A^{k} as representing all paths of length k in a graph. How many of these are there? --> k/2.

To see this, imagine that you are on a path in the graph. Each time you go through an edge the first time, you must go to a new vertex.

How many trees are rooted at vertex? :=
(\# of types of dfs trees with $\mathrm{k} / 2$ vertices)(\# of ways of embedding $\mathrm{it}=\mathrm{n} / 2$)
Dfs trees can be represented as a string of balanced parentheses. To see this, take a graph. The first time you are at a node, form an open parenthesis as you leave it. When you return to that node at some other point in the dfs, add a closed parenthesis. Recursively do this on subtrees.

For instance, imagine the DFS path A-B-D-B-E-B-A-C-F-C
=> $((()())(())))$

We know that the number of pairs of parentheses is equal to $C_{k / 2}$ (the $k / 2{ }^{\text {nd }}$ Catalan number). Thus the \# of dfs trees is equal to $C_{k / 2} n^{k / 2}$
$C_{k}=\frac{1}{k+1}\binom{2 k}{k}$ so...
$C_{k / 2}=\frac{1}{k / 2+1}\binom{k}{k / 2}$
thus,
$\operatorname{trace}\left(A^{k}\right)=n \frac{1}{k / 2+1}\binom{k}{k / 2} n^{k / 2}$
$p(l)=\frac{1}{2^{k} n^{1+k / 2}} \operatorname{trace}\left(A^{k}\right)$
$=\frac{1}{2^{k}} \frac{1}{k / 2+1}\binom{k}{k / 2}$
$=\frac{1}{k 2^{k-1}+2^{k}}\binom{k}{k / 2}$
$=\frac{1}{2^{k-1}(k+2)}\binom{k}{k / 2}$
given k odd, we have ($k-1) / 2$ free vertices and thus $n \wedge((k-1) / 2)$ trees of a given type, which is independent of n. As n goes to infinity, the moment goes to 0 .

