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Wegner’s Semicircular Law

If we have a large dataset in a high dimensional space, we might ask ourselves whether

the data really lie in such a high dimension, or if it is lower dimensional data hiding

behind random noise, and how could we distinguish the data from the noise.

In situations like these, Wegner’s semicircular law can be helpful since it will give us a

picture of what the eigenvalues of a random matrix will look like, and we can use this

information to filter out what is most likely the noise in a matrix with both data and

noise. For example, if there are 6 outliers outside the semicircular distribution, then the

data is really 6 dimensional, and the rest is just random noise.

Let A be a random n × n matrix, and aij the entry in the ith row and jth column.

Assume

E[aij] = 0

σ2(aij) = 1.

That is, each entry of A has expected value 0 and unit variance.

Define Pn(λ) to be the probability distribution of the normalized eigenvalues of such an

n×n matrix. By normalized eigenvalues, we mean eigenvalues resized to lie in the region

[−1, 1]. It turns out that for a random matrix with expected value 0 for each element,

the eigenvalues will lie in the range −2
√

πσ to 2
√

πσ, so normalizing involves dividing

the eivenvalues by 2
√

πσ. Let

P (λ) = lim
n→∞

Pn(λ).

Think of P (λ) as the probability distribution of eigenvalues for a large random matrix.

What Wegner realized is that P (λ) is roughly a semicircle centered at the origin with

radius 1 along the x-axis, but with a slightly smaller height (2/π) that makes the area

under this semicircle 1.

Theorem (Wegner). For P (λ) as defined above,

P (λ) =

{
2
π

√
1− λ2 if λ2 ≤ 1

0 otherwise.

Proof. Idea: Compare the moments of 2
π

√
1− λ2 to the moments of P (λ).
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For simplicity, assume the elements of the matrix are

aij = ±1, Pr = 1/2.

Let ck be the kth moment of 2
π

√
1− λ2.

ck =

{
0 if k is odd
2
π

∫ 1

−1
λk
√

1− λ2 dλ if k is even.

To evaluate this integral, let λ = sin θ. Then dλ = cos θ dθ, and as λ ranges from -1 to

1, θ ranges from −π/2 to π/2. So, for even k,

ck =
2

π

∫ π/2

−π/2

sink θ cos2 θ dθ

=
2

π

[∫ π/2

−π/2

sink θ dθ −
∫ π/2

−π/2

sink+2 θ dθ

]
.

Useful formulas: ∫
sinn θ dθ =

− sinn−1 θ cos θ

n
+

n− 1

n

∫
sinn−2 θ dθ∫

sin2 θ dθ =
1

2

∫
(1− cos 2θ) dθ =

1

2
θ − 1

4
sin 2θ.

Our bounds of integration, −π/2 to π/2, simplify these integrals somewhat, and with a

little algebra, we get

ck =
2

π

[(
k − 1

k
· k − 3

k − 2
· · · 3

4
· π

2

)
−

(
k + 1

k + 2
· k − 1

k
· · · 3

4
· π

2

)]
= 2

[(
k − 1

k
· k − 3

k − 2
· · · 3

4
· 1

2

)
−

(
k + 1

k + 2
· k − 1

k
· · · 3

4
· 1

2

)]
= 2

[
1 · 3 · · · (k − 1)

2 · 4 · · · k · (k + 2)
(k + 2− (k + 1))

]
=

2

k + 2

k!

(2 · 4 · · · k)2

=
1

(k + 2) 2k−1

(
k

k/2

)
.

We now go on to calculate the moments of P (λ) itself. Let mk be the kth moment of
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P (λ). We have

mk = E

[
1

n

n∑
j=1

(
λj

2
√

n

)k
]

.

It is simply the expected average of the normalized eigenvalues raised to the kth power.

Remember that we are assuming σ = 1, so we can normalize by dividing by 2
√

n instead

of 2
√

nσ.

The last expression can be rewritten as

mk =
1

2k n1+k/2
E

[
n∑

j=1

λk
j

]
.

Recall that trace(A) = λ1 + λ2 + · · · + λn. It can also be shown that trace(Ak) =

λk
1 + λk

2 + · · ·+ λk
n.

Thus,

mk =
1

2k n1+k/2
E

[
trace(Ak)

]
.

You can think of Ak as representing all paths of length k in a graph described by A...

[We shall continue this proof in the next lecture.]
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