Soo Yeon Lee
Jang Ho Kim

- Announcements

- Send references to bhoward@cs.cornell.edu
- Random walks on expanders
- Real world examples: Finding random websites

Comparing search engines

- Regular degree d graphs
$\mathrm{P}=\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)^{\mathrm{T}}$ where P_{i} is the probability of being at vertex i
Intially, $\mathrm{P}=(1,0, \ldots, 0)^{\mathrm{T}} \quad \leftarrow$ start at vertex 1
$A \cdot \frac{P}{d} \rightarrow P^{\prime}$ (P^{\prime} is the new prob)
Suggest normalizing A by dividing by $\mathrm{d}: \frac{\mathrm{A}}{\mathrm{d}}$
Stationary probability: $\left(\frac{1}{n}, \cdots, \frac{1}{n}\right)=\frac{u}{n} \quad$ where $u=(1, \cdots, 1)$
Theorem: Let P be an arbitrary probability distribution.
Then $\left|\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{s} \mathrm{P}-\frac{u}{n}\right|_{1} \leq \sqrt{n}\left(\frac{\lambda}{\mathrm{~d}}\right)^{s} \quad$ where $\lambda=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{\mathrm{n}}\right|\right\}$ and s is the number of steps.
$\underline{\text { Proof: Since } \frac{u}{n}}$ is an eigenvector of $\frac{A}{d}$ with eigenvalue 1 ,

$$
\frac{\mathrm{A}}{\mathrm{~d}} \cdot \frac{u}{n}=\frac{u}{n} \text { and }\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{S} \cdot \frac{u}{n}=\frac{u}{n}
$$

So, $\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{S} \mathrm{P}-\frac{u}{n}=\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{S} \mathrm{P}-\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{S} \frac{u}{n}=\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{S}\left(\mathrm{P}-\frac{u}{n}\right)$

$$
\left|\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{S} \mathrm{P}-\frac{u}{n}\right|_{2}=\left|\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{S}\left(\mathrm{P}-\frac{u}{n}\right)\right|_{2}
$$

The coordinates of P sum to 1 as do the coordinates of $\frac{u}{n}$. Thus the coordinates of $\left(\mathrm{P}-\frac{u}{n}\right)$ sum to zero. Therefore, $\left(\mathrm{P}-\frac{u}{n}\right)$ is orthogonal to u and hence is in the subspace spanned by the remaining eigenvectors $v_{2}, v_{3}, \ldots, v_{n}$.

$$
\begin{aligned}
& \left|\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{s}\left(\mathrm{P}-\frac{u}{n}\right)\right|_{2} \leq\left(\frac{\lambda_{2}(\mathrm{~A})}{\mathrm{d}}\right)^{S}\left|\mathrm{P}-\frac{u}{n}\right|_{2} \\
& p-\frac{u}{n} \\
& =\left|\left(p_{1}, \ldots, p_{n}\right)-\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\right|_{2} \leq\left|(1,0, \ldots, 0)-\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\right|_{2} \\
& \\
& =\left(1-\frac{1}{n}\right)+\frac{1}{n}+\ldots+\frac{1}{n} \\
& \\
& =1-\frac{2}{n}+\frac{1}{n}+\frac{n-1}{n^{2}}=1-\frac{2}{n}+\frac{1}{n}
\end{aligned}
$$

Since $\left|p-\frac{u}{n}\right|_{2} \leq 1$

$$
\left|\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{s}\left(\mathrm{P}-\frac{\mu}{n}\right)\right|_{2} \leq\left(\lambda\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)\right)^{s}
$$

To convert this to a one-norm, use $|v|_{1} \leq \sqrt{n}|v|_{2}$
Thus $\left|\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{S}\left(\mathrm{P}-\frac{\mu}{n}\right)\right|_{1} \leq \sqrt{n}\left(\lambda\left(\frac{\mathrm{~A}}{\mathrm{~d}}\right)\right)^{S}=\sqrt{n}\left(\frac{\lambda(\mathrm{~A})}{\mathrm{d}}\right)^{S}$

Corollary: $\left|\left(\frac{\mathrm{A}}{\mathrm{d}}\right)^{S}\left(\mathrm{P}-\frac{\mu}{n}\right)\right|_{1} \leq \sqrt{n}\left(1-\frac{h^{2}(G)}{2 \mathrm{~d}^{2}}\right)^{S}$
Where $\left.h(G)=\frac{\min |\partial S|}{|s| \leq \frac{n}{2}}|\quad *| \partial S \right\rvert\,$ is the number of edges out of S
$\Delta(G)=\lambda_{1}-\lambda_{2} \quad *$ Recall $h^{2}(G) \leq 2 d \Delta(G)$
Proof: $\lambda\left(\frac{A}{d}\right) \geq \lambda_{2}\left(\frac{A}{d}\right)=\frac{\lambda_{2}(A)}{d}=\frac{\lambda_{1}-\Delta}{d}=1-\frac{\Delta}{d}$

$$
\begin{aligned}
& \left|\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{S}\left(\mathrm{P}-\frac{\mu}{n}\right)\right|_{1} \leq \sqrt{n}\left(1-\frac{\Delta}{\mathrm{d}}\right)^{s} \quad h^{2}(G) \leq 2 d \Delta(G) \Rightarrow \frac{h^{2}(G)}{2 d} \leq \Delta(G) \\
& \therefore\left|\left(\frac{\mathrm{A}}{\mathrm{~d}}\right)^{S}\left(\mathrm{P}-\frac{\mu}{n}\right)\right|_{1} \leq \sqrt{n}\left(1-\frac{h^{2}(G)}{2 \mathrm{~d}^{2}}\right)^{s}
\end{aligned}
$$

