Lecture Notes 3/17/06
Kareem Amin

Definition: Eigengap A(G) = A, — A,

Theorem: AG) < h(G)
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Let S and T be disjoint subsets of vertices in G.
Let usand u,be the characteristic vectors of S and T.
Observe that:
us' Auy=|E(S,T) where E(x,y) is the number of edges between vertices in x and y

Note that this is because the ith component of 4u; is the number of edges between vertices in
T and vertex i. So ug' Au, is the sum of edges between vertices in T and vertices in S.
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Since E(S,S)+E(S,S)=d|S| and E(S,S)+E(S,S)=d|S| :
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Combining Equations 1 and 2, we have:
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Since A= max, ,,~—— , A=2—F—=d—(r5;+=)E(S,S) [Eq3]
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If we select S such that E(S,S)=4(G)|S| and |S|§§
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h(G)=min (see previous lecture)

Let S be the set T minimizes h(G)
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Thus,
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Since S is at most  n/2 |——| is at most 1, therefore,
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A>d—2h(G)

A(G)=A,—A,=d —(d-2h(G))

A-—=<h(G) (as desired)

A similar proof exists for  4(G) < V2dA(G)



