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Definition: Eigengap G  = 1 − 2

Theorem: G
2

≤ h G ≤ 2dG

Pf: 

Let S and T be disjoint subsets of vertices in G.

Let us and ut be the characteristic vectors of S and T.

Observe that:

uS
T AuT=∣E S ,T ∣  where E(x,y) is the number of edges between vertices in x and y

Note that this is because the ith component of AuT is the number of edges between vertices in 
T and vertex i. So uST AuT is the sum of edges between vertices in T and vertices in S.
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E S ,S   (See observation above).

Since E S ,S E S ,S =d ∣S∣ and E S ,S E S ,S =d ∣S∣ :
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Combining Equations 1 and 2, we have:
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Since 2= max x⊥u
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xT x
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If we select S such that E S ,S =hG ∣S∣ and ∣S∣≤n
2

h G=min
∣T∣≤n2

∣T∣
∣T∣ (see previous lecture)

Let S be the set T minimizes h(G) 

h(G) = 
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Thus,

2≥d− 1
∣S∣

 1
∣S∣

∣S∣hG  [by Eq 3 and Eq 4]

2≥d−1∣S∣
∣S∣

h G 

Since S is at most n /2
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∣S∣ is at most 1, therefore,
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≤hG  (as desired)

A similar proof exists for h G  ≤ 2dG 


