Kareem Amin

Definition: Eigengap $\Delta(G)=\lambda_{1}-\lambda_{2}$
Theorem: $\frac{\Delta(G)}{2} \leq h(G) \leq \sqrt{2 \mathrm{~d} \Delta(G)}$
Pf:
Let S and T be disjoint subsets of vertices in G.
Let u_{s} and u_{t} be the characteristic vectors of S and T.
Observe that:

$$
u_{S}^{T} A u_{T}=|E(S, T)| \quad \text { where } \mathrm{E}(\mathrm{x}, \mathrm{y}) \text { is the number of edges between vertices in } \mathrm{x} \text { and } \mathrm{y}
$$

Note that this is because the ith component of $A u_{T}$ is the number of edges between vertices in T and vertex i. So $u_{S}{ }^{T} A u_{T}$ is the sum of edges between vertices in T and vertices in S .

$$
\begin{aligned}
& \text { Let } \mathrm{v}= \\
& \begin{aligned}
& v^{T} v= \frac{u_{S}}{|S|}-\frac{u_{\bar{S}}}{|\bar{S}|} \\
&|S|^{2} \\
&+\frac{|\bar{S}|}{|\bar{S}|^{2}} \quad \text { since } \quad u_{S} \cdot u_{\bar{S}}=0 \\
& v^{T} v= \frac{1}{|S|}+\frac{1}{|\bar{S}|} \quad[\text { Eq 1] } \\
& v^{T} A v=v^{T}\left(A \frac{u_{S}}{|S|}-A \frac{u_{\bar{S}}}{|\bar{S}|}\right)=\left(\frac{u_{S}^{T}}{|S|}-\frac{u_{\bar{S}}^{T}}{|\bar{S}|}\right)\left(A \frac{u_{S}}{|S|}-A \frac{u_{\bar{S}}}{|\bar{S}|}\right) \\
&=\frac{1}{|S|^{2}}\left(u_{S}^{T} A u_{S}\right)+\frac{1}{|\bar{S}|^{2}}\left(u_{\bar{S}}^{T} A u_{\bar{S}}\right)-\frac{1}{|S||\bar{S}|}\left(u_{S}^{T} A u_{\bar{S}}\right)-\frac{1}{|S||\bar{S}|}\left(u_{\bar{S}}^{T} A u_{S}\right) \\
&=\frac{1}{|S|^{2}} E(S, S)+\frac{1}{|\bar{S}|^{2}} E(\bar{S}, \bar{S})-\frac{2}{|S||\bar{S}|} E(S, \bar{S}) \quad \text { (See observation above). }
\end{aligned}
\end{aligned}
$$

Since $E(S, S)+E(S, \bar{S})=d|S|$ and $E(\bar{S}, \bar{S})+E(S, \bar{S})=d|\bar{S}|$:

$$
\begin{aligned}
v^{T} A v & =\frac{1}{|S|^{2}}(d|S|-E(S, \bar{S}))+\frac{1}{|\bar{S}|^{2}}(d|\bar{S}|-E(S, \bar{S}))-\frac{2}{|S||\bar{S}|} E(S, \bar{S}) \\
& =d\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)-\left(\frac{1}{|S|^{2}}+\frac{1}{|\bar{S}|^{2}}+\frac{2}{|S||\bar{S}|}\right) E(S, \bar{S})
\end{aligned}
$$

$$
\begin{equation*}
=d\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)-\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)^{2} E(S, \bar{S}) \tag{Eq2}
\end{equation*}
$$

Combining Equations 1 and 2, we have:

$$
\frac{v^{T} A v}{v^{T} v}=d-\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right) E(S, \bar{S})
$$

Since $\quad \lambda_{2}=\max _{x \perp u} \frac{x^{T} A x}{x^{T} x}, \quad \lambda_{2} \geq \frac{v^{T} A v}{v^{T} v}=d-\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right) E(S, \bar{S}) \quad[\mathrm{Eq} 3]$

If we select S such that $E(S, \bar{S})=h(G)|S|$ and $\quad|S| \leq \frac{n}{2}$

$$
h(G)=\min _{|T| \leq \frac{n}{2}} \frac{|\delta T|}{|T|} \quad \text { (see previous lecture) }
$$

Let S be the set T minimizes $h(G)$
$\mathrm{h}(\mathrm{G})=\frac{|\delta S|}{|S|}=\frac{E(S, \bar{S})}{|S|} \quad$ Thus, $\quad|S| h(G)=E(S, \bar{S}) \quad[\mathrm{Eq} 4]$
Thus,

$$
\begin{aligned}
& \lambda_{2} \geq d-\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)|S| h(G) \quad[\text { by Eq } 3 \text { and Eq 4] } \\
& \lambda_{2} \geq d-\left(1+\frac{|S|}{|\bar{S}|}\right) h(G)
\end{aligned}
$$

Since S is at most $n / 2 \quad \frac{|S|}{|\bar{S}|}$ is at most 1 , therefore,

$$
\begin{aligned}
& \lambda_{2} \geq d-2 h(G) \\
& \Delta(G)=\lambda_{1}-\lambda_{2} \leq d-(d-2 \mathrm{~h}(G)) \\
& \Delta(G) \leq 2 \mathrm{~h}(G) \\
& \Delta \frac{(G)}{2} \leq h(G) \quad \text { (as desired) }
\end{aligned}
$$

A similar proof exists for $\quad h(G) \leq \sqrt{2 \mathrm{~d} \Delta(G)}$

