Lecture Notes 3/17/06 Kareem Amin

Definition: Eigengap $\Delta(G) = \lambda_1 - \lambda_2$

Theorem:
$$\frac{\Delta(G)}{2} \le h(G) \le \sqrt{2d \Delta(G)}$$

Pf:

Let S and T be disjoint subsets of vertices in G.

Let u_s and u_t be the characteristic vectors of S and T.

Observe that:

$$u_S^T A u_T = |E(S, T)|$$
 where $E(x,y)$ is the number of edges between vertices in x and y

Note that this is because the ith component of Au_T is the number of edges between vertices in T and vertex i. So $u_S^T Au_T$ is the sum of edges between vertices in T and vertices in S.

Let
$$v = \frac{u_S}{|S|} - \frac{u_{\overline{S}}}{|\overline{S}|}$$

$$v^T v = \frac{|S|}{|S|^2} + \frac{|\overline{S}|}{|\overline{S}|^2}$$
 since $u_S \cdot u_{\overline{s}} = 0$

$$v^T v = \frac{1}{|S|} + \frac{1}{|\overline{S}|}$$
 [Eq 1]

$$v^{T} A v = v^{T} \left(A \frac{u_{S}}{|S|} - A \frac{u_{\overline{S}}}{|\overline{S}|} \right) = \left(\frac{u_{S}}{|S|}^{T} - \frac{u_{\overline{S}}}{|\overline{S}|} \right) \left(A \frac{u_{S}}{|S|} - A \frac{u_{\overline{S}}}{|\overline{S}|} \right)$$

$$= \frac{1}{|S|^{2}} (u_{S}^{T} A u_{S}) + \frac{1}{|\overline{S}|^{2}} (u_{\overline{S}}^{T} A u_{\overline{S}}) - \frac{1}{|S||\overline{S}|} (u_{S}^{T} A u_{\overline{S}}) - \frac{1}{|S||\overline{S}|} (u_{\overline{S}}^{T} A u_{S})$$

$$= \frac{1}{|S|^{2}} E(S, S) + \frac{1}{|\overline{S}|^{2}} E(\overline{S}, \overline{S}) - \frac{2}{|S||\overline{S}|} E(S, \overline{S}) \quad \text{(See observation above)}.$$

Since
$$E(S, S) + E(S, \overline{S}) = d|S|$$
 and $E(\overline{S}, \overline{S}) + E(S, \overline{S}) = d|\overline{S}|$

$$v^{T} A v = \frac{1}{|S|^{2}} (d|S| - E(S, \overline{S})) + \frac{1}{|\overline{S}|^{2}} (d|\overline{S}| - E(S, \overline{S})) - \frac{2}{|S||\overline{S}|} E(S, \overline{S})$$

$$= d(\frac{1}{|S|} + \frac{1}{|\overline{S}|}) - (\frac{1}{|S|^{2}} + \frac{1}{|\overline{S}|^{2}} + \frac{2}{|S||\overline{S}|}) E(S, \overline{S})$$

$$= d\left(\frac{1}{|S|} + \frac{1}{|\overline{S}|}\right) - \left(\frac{1}{|S|} + \frac{1}{|\overline{S}|}\right)^{2} E\left(S, \overline{S}\right) \quad \text{[Eq 2]}$$

Combining Equations 1 and 2, we have:

$$\frac{v^{T} A v}{v^{T} v} = d - \left(\frac{1}{|S|} + \frac{1}{|\overline{S}|}\right) E\left(S, \overline{S}\right)$$

Since
$$\lambda_2 = \max_{x \perp u} \frac{x^T A x}{x^T x}$$
, $\lambda_2 \ge \frac{v^T A v}{v^T v} = d - (\frac{1}{|S|} + \frac{1}{|\overline{S}|}) E(S, \overline{S})$ [Eq 3]

If we select S such that $E(S, \overline{S}) = h(G)|S|$ and $|S| \le \frac{n}{2}$

$$h(G) = min_{|T| \le \frac{n}{2}} \frac{|\delta T|}{|T|}$$
 (see previous lecture)

Let S be the set T minimizes h(G)

$$h(G) = \frac{|\delta S|}{|S|} = \frac{E(S, \overline{S})}{|S|}$$
 Thus, $|S|h(G) = E(S, \overline{S})$ [Eq 4]

Thus,

$$\lambda_2 \ge d - (\frac{1}{|S|} + \frac{1}{|\overline{S}|})|S|h(G)$$
 [by Eq 3 and Eq 4]

$$\lambda_2 \ge d - \left(1 + \frac{|S|}{|\overline{S}|}\right) h(G)$$

Since S is at most n/2 $\frac{|S|}{|\overline{S}|}$ is at most 1, therefore,

$$\lambda_2 \ge d - 2h(G)$$

$$\Delta(G) = \lambda_1 - \lambda_2 \le d - (d - 2h(G))$$

$$\Delta(G) \leq 2h(G)$$

$$\Delta \frac{(G)}{2} \le h(G)$$
 (as desired)

A similar proof exists for $h(G) \leq \sqrt{2d\Delta(G)}$