
CS485 lecture notes for 3/15/06
Dan FitzGerald
dpf7

Recall:

dmin and dmax are the minimum and maximum degree of vertices.

λ1 is the 1st eigenvalue.

Lemma:
max {dmin ,dmax }≤λ 1≤min {dmax , 2∗2∗∣E∣}

Proof:

let u be a vector of all ones: u=(1,1,.....1)

Au yields the degree distribution of the graph: (d1, d2, ..., dn)T.. We know this is >= than dmin*u.
uT Au≥dmin∗uT u

λ 1=
max

x
xT Ax
xT x

≥
uT Au
uT u

≥dmin

Highest degree vertex:

Get Gs be a star of the higest degree edge, i.e. Gs is simply the highest degree node and the edges

coming out of it.

λ 1Gs=dmax
Gs⊂G ,λ 1e≥ dmax

Let v be the eigenvector associated with λ1. Normalize it so that its max coordinated is 1.
λ 1v=Av≤Au≤dmax∗u
remember ,λ 1≤dmax

λ 1=∣A∣2≤∣a∣F=∑
ij

aij
2=2∣E∣

Given bits a1, a2 and b1,b2, how can we compute a1b1 and a2b2 using these constraints:

Answer: Send a1a2 and b1b2 down the edges with capacity 2. Through the capacity 1 edge, send a2 xor

b1. This will result in a1b1 and a2b2 ending up in their correct places while still following the capacity

constraints.

But can we do better? Imagine if we had bits a1..a8 and b1...b8. Using a sort of divide and conquer

approach, we can achieve a1b1, ..., a8b8 in O(n log n) edges. We would simply send a1 through a4 and

b1 through b4 to the second level of our graph, then split those inputs and send a1 and a2 with b1 and

b2, etc.

Expanders:

A graph is an expander if for every subset S of vertices V, |S| <= n/2, S will be adjacent to <= |S|

a1a2 b1b2

a1b1 a2b2

2
21

vertices not in S.

Define ∂s to be the set of edges from vertices in S to vertices not in S.

Define the expansion parameter for G as h G =
min

∣S∣≤
n
2

∣∂ S∣
∣S∣

A family of graphs is an edge expander if h(G) is bounded away from 0.

Consider a d-regular graph G= (V,E), S subset of V.

for a v∈S there will be
∂∣S∣

n adjacent vertices in S'.

∂ s=
∂∣S∣∣S '∣

n

h G =
min

∣S∣≤
n
2

∂∣S '∣
∣n∣

=
d
n

min

∣S∣≤
n
2
∣S '∣=

d
2

