CS485 lecture notes for 3/15/06
Dan FitzGerald
dpf7
Recall:
dmin and dmax are the minimum and maximum degree of vertices.
λ_{1} is the $1^{\text {st }}$ eigenvalue.

Lemma:
$\max \{d \min , \sqrt{d m a x}\} \leq \lambda_{1} \leq \min \{d \max , 2 * \sqrt{2 *|E|}\}$
Proof:
let u be a vector of all ones: $u=(1,1, \ldots . .1)$
Au yields the degree distribution of the graph: $(\mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dn})^{\mathrm{T}}$. We know this is $>=$ than $\mathrm{dmin} * \mathrm{u}$. $u^{T} A u \geq \operatorname{dmin} * u^{T} u$
$\lambda_{1}=\max _{x} \frac{x^{T} A x}{x^{T} x} \geq \frac{u^{T} A u}{u^{T} u} \geq d$ min

Highest degree vertex:
Get Gs be a star of the higest degree edge, i.e. Gs is simply the highest degree node and the edges coming out of it.

$$
\begin{aligned}
& \lambda_{1}(G s)=\sqrt{d m a x} \\
& G s \subset G, \lambda_{1}(e) \geq \sqrt{d m a x}
\end{aligned}
$$

Let v be the eigenvector associated with λ_{1}. Normalize it so that its max coordinated is 1 .

$$
\begin{aligned}
& \lambda_{1 \mathrm{v}}=A v \leq A u \leq \operatorname{dmax} * u \\
& \text { remember, } \lambda_{1} \leq d \max \\
& \lambda_{1}=|A|_{2} \leq|a|_{F}=\sqrt{\sum_{i j} a_{i j}^{2}}=2|E|
\end{aligned}
$$

Given bits a_{1}, a_{2} and b_{1}, b_{2}, how can we compute $a_{1} b_{1}$ and $a_{2} b_{2}$ using these constraints:

Answer: Send $a_{1} a_{2}$ and $b_{1} b_{2}$ down the edges with capacity 2 . Through the capacity 1 edge, send a_{2} xor $b_{1 .}$ This will result in $a_{1} b_{1}$ and $a_{2} b_{2}$ ending up in their correct places while still following the capacity constraints.

But can we do better? Imagine if we had bits a1..a8 and b1...b8. Using a sort of divide and conquer approach, we can achieve $\mathrm{a} 1 \mathrm{~b} 1, \ldots, \mathrm{a} 8 \mathrm{~b} 8$ in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ edges. We would simply send a1 through a4 and b1 through b4 to the second level of our graph, then split those inputs and send a1 and a2 with b1 and b2, etc.

Expanders:
A graph is an expander if for every subset S of vertices $V,|S|<=n / 2, S$ will be adjacent to $<=|S|$
vertices not in S.

Define ∂s to be the set of edges from vertices in S to vertices not in S.
Define the expansion parameter for G as $\quad h(G)=\begin{aligned} & \min \\ & |S| \leq \frac{n}{2} \frac{|\partial S|}{|S|}\end{aligned}$
A family of graphs is an edge expander if $h(G)$ is bounded away from 0 .

Consider a d-regular graph $G=(V, E), S$ subset of V. for a $v \in S$ there will be $\frac{\partial|S|}{n}$ adjacent vertices in S^{\prime}.
$\partial s=\frac{\partial|S|\left|S^{\prime}\right|}{n}$
$\left.h(G)=\min _{|S| \leq \frac{n}{2}}^{\operatorname{m|S^{\prime }|}}=\frac{d}{n \mid}|S| \leq \frac{n}{2}{ }^{\text {min }} S^{\prime} \right\rvert\,=\frac{d}{2}$

