3/13 CS485 Notes (Jae-Ho Lee — JL592)

Review:

Eigenvalues of specific graphs. Connected, regular, degree d with an odd cycle.
d=M>M>...>d

If G has no odd cycle, then A, =-d

Lemma
If G has exactly k components then

d=M=M=...=M> Mt ... Ay =-d

Proof
Adjacency matrix is block diagonal with exactly k blocks.

Eigenvalues of big matrix are union of eigenvalues of blocks

Bl 0 0 0 \o xl
0 B2 : 0
IfBlx= Ax 0 . ol=1o
: . 0 :
0 Bk 0

D appears exactly k times as eigenvalues

All others less than d. (Proof only holds for regular d degree graph)

Corollary : A regular degree d graph is connected iff A; > A,

Relax regular degree d condicion, connectivity, etc
Arbitrary graphs.

Adding edges to a graph does not decrease max eigenvalue.

Lemma
The eigenvector associated with A; has all non-negative components.

Proof
Let A; be adjacency matrix of G; and A;(A,) be the max eigenvalue.

M(AD) =7 Ay <y Agy

But
A1(A2) = max-1 XTAX > yTAzy
>vTAly=M(A)

}Ll(Az) > 7\.1(A1)
*Note
Definition

7\,1 = MmaX=1 |AX|2
Theorem

T
A= max 4 XTAX

X X

T
= maxp-1 X AX

CS 485 Lecture 22 — 13 March 2006 — second half
Jeff Wong (jmw92)

Random Walk on a Directed Graph
e In the case of a connected undirected graph, iterating the
probability vector by multiplying p—AD'p, we get a
steady-state probability proportional to the degree of the G

graph.

e For a directed graph, we can get the iterated probability by @ @
multiplying p—ADg'p, where D' is a diagonal matrix @
where each element is the inverse of the sum of the rows
of A, equivalent to the outgoing degree of each node.

¢ There exists a problem: what happens at dead-end nodes,
like E? The probability that we were at E just “disappears,” and also, multiplying by
Dy causes us to multiply by 1/0 for a dead end.

¢ One solution is to add a self-loop to every node, so that there are no dead ends. But this
results in a probability that saturates at dead end nodes and is dependent on where you
start.

e Google came up with a solution when looking at the web as a directed graph: at each
step, with probability €, reset your location and go to a random node.

o This is equivalent to adding an edge from each node to each other node; at each step
we take one of these new edges with probability e/n. But this adds n” new edges,
which becomes unwieldy.

o A better way: add a new node, with incoming edges from every node and outgoing
edges to every node. Then, from each node, go to the new node with probability &;
then, at the new node, go to all other nodes with uniform probability.

How long do you have to iterate this process until you get a steady state? It depends on
the graph, but it turns out that for a random graph, you approach the steady state
exponentially fast.

Random Algorithms are algorithms that use the outcome of random variables (e.g. coin
flips)

Example: Is n prime?

If n is prime, then "' = 1 mod n for all 1 <a < n-1

If n is not prime, then "' # 1 mod # for at least half of all 1 <a < n-1

The algorithm: choose 100 random a’s and calculate "' mod n. If we get any
results not equal to 1, then we know that n is composite. If we get all 1°s,
then we know that the probability of n being composite is less than 1/2'%.

But we need 100 random numbers (100 log » bits) to do this. We would like
to reduce this number.

Spectrum of a Star
The spectrum of a graph is the set of eigenvalues.
A star has an adjacency matrix

A= 0 This has rank=2.

[

1

We can see the following easily:

01 1 -~ 1 n—1 n—1
1 1 n—1 . .
1o 1 | =|va-1| so one eigenvalue is v/n—1
1 1 n-1
0
o111 -1 1 0
1 : 0 .
1o ~»-1y|=|0| so (n-2) eigenvalues are 0
: 1 :
! : 0
0
01 1 - 1)\ —vn-1 n—1
1 1 —n-1
1o 1| =|-va-1| so one eigenvalue is —+/n—1
1 1 —n-1

	Lemma
	Proof
	Lemma
	Proof
	*Note
	Definition
	Theorem

