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We start by looking at the vertex importance process that we ended with last class. We saw that
by iterating the redistribution process and weighting over and over, we approach the degree distribution.
(Without weighting the process goes to infinity) Adjacency

Matrix
A

 Prob.
Dist.

x

 =

 New
Prob.
Dist.

 (1)

Which gives us the equation (A− λI)x = 0. This equation has a non-trivial solution iff det(A− λI) = 0.
This will yield a polynomial in λ of degree n, which has n unique roots (the eigenvalues).
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The difference between λ1 and λ2 determines how fast the importance process converges to a stable
solution. Now, instead of looking at importances, lets instead to a random walk on the graph in which we
pick each outgoing edge with equal probability. The node we start from begins with a probability of 1, and
get distributed to the nodes it’s connected to on the first step.

Now instead of simply multiplying x by the adjacency matrix A, we first multiply x by the inverse of the
degree distribution.

AD−1x = x AD−1 is not a symmetric matrix
y = D−1/2x variable substitution {y / x}
x = D1/2y solve for x

AD−1D1/2y = D1/2y substitute into original
D−1/2AD−1/2y = y now we have a symmetric matrix

Notice that y is not actually the vector of stationary probabilities, x is. After solving for y, we need to get
x by computing D1/2y. So what does D−1/2AD−1/2 look like?
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We can find the first eigenvector by relaxation, the repeated process seen above. We know that the values
used to find x start and stay positive, so this must be the first eigenvector.

For regular degree d graphs:

1. G is connected iff λ1 >λ2

2. G is bipartite iff λ1 = −λn

Lemma: Consider a random connected regular degree d graph G. Let A be the adjacency matrix of this
graph. Then,

d = λ1 > λ2 ≥ λ3 ≥ ... ≥ −d (last equality becomes strict if graph is bipartite)

Proof: Let u =

 1
...
1

 (note that this is an eigenvector). Let x be an eigenvector not proportional to u.

Let max be the value of the maximum coordinate of x. Construct a set S = { i | xi = max}. Since G is
connected, there exists a vertex in S connected to a vertex not in S. Call the vertex in S, j.
Consider multiplying x times the jth row of A. Since the jth row has exactly d 1’s and one of these
corresponds to a component of x less than max, the product is less than or equal to d ∗max.
Since x is an eigenvector of A, the product of x with the jth row of A must be λxj . Therefore, if we have
an odd cycle we can combine both of the results:

λxj < d ∗max and xj = max :

Therefore,
λ < d

and
λ1 = d〉λ2 ≥ λ3 ≥ ...λn〉 − d

Lemma: If the graph has exactly k connected components then:

λ1 = λ2 = λ3 = ... = λk > λk+1 > ...
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