<u>CS 485 Lecture 19</u> 6 March 2006

Scribes: Jason Lui (jsl57) and Jeff Wong (jmw92)

Four generating functions from previous lecture

Deg: g_0, g_1 Size: h_0, h_1

$$h_0'(1) = 1 + g_0'(1)h_1'(1)$$
 (I)
 $h_1'(1) = 1 + g_1'(1)h_1'(1)$ (II)

From (II), we have
$$h_1'(1) = 1 / [1 + g_1'(1)]$$
 (III)

Plugging (III) back to (I) $h_0'(1) = 1 + g_0'(1) / [1 - g_1'(1)]$

Therefore, point at which the giant components appears when $g_1'(1) = 1$

We also know that:

$$g_1'(1) = g_0''(1) / g_0'(1) = 1 \rightarrow g_0''(1) = g_0'(1)$$

By definition:

$$g_0(x) = \sum P_k x^k$$

$$g_0'(x) = \sum k P_k x^{k-1}$$

$$g_0''(x) = \sum k (k-1) P_k x^{k-2}$$

Since
$$g_0$$
''(1) = g_0 '(1), let x = 1

$$\sum kP_k = \sum k(k-1)P_k$$

$$\sum (k^2-2k)P_k = 0$$

$$\sum k(k-2)P_k = 0$$

This is the end of random graph materials.

High Dimensional Data

10⁶ papers

25,000 dimensional vector to represent the words used in the papers

This is a very large dimension, so we can randomly select a 300 dimensional subspace and project all the data points to such subspace. In fact, we can pick a subspace such that we minimize the error between data and its projection.

SVD: Singular Value Decomposition

Let **A** be the $10^6 \times 25000$ matrix of data from your set of papers. Any matrix **A** can be rewritten as $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$ where **U** and **V** are orthonormal and $\mathbf{\Sigma}$ is diagonalised:

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ \sigma_2 & \\ \vdots & \sigma_N \end{pmatrix} \quad \text{with } \sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \geq \sigma_N$$

Create a new matrix $\Sigma^{(k)}$ by keeping only the *k* largest σ 's in Σ :

Then write $\mathbf{A}^{(k)} = \mathbf{U} \mathbf{\Sigma}^{(k)} \mathbf{V}^{\mathrm{T}}$.

What is the error between **A** and $A^{(k)}$?

Norms

- Frobenius norm: $|\mathbf{A}|_F^2 = \sum_{i} a_{ij}^2 = \text{sum of squares of all of the elements of } \mathbf{A}$.

Let a_i be the ith column of **A**. Then $(\mathbf{A}^T\mathbf{A})_{ij} = (a_i)^Ta_j$.

So $\text{Tr}(\mathbf{A}^{T}\mathbf{A}) = \Sigma_{i}(a_{i})^{T}a_{i} = \Sigma_{i}|a_{i}|^{2} = \text{sum of squares of elements of } \mathbf{A} = |\mathbf{A}|_{E}^{2}$

- 2-norm:

For a vector
$$\mathbf{x} = (x_1, x_2, \dots x_n), \ |\mathbf{x}|_2 = \sqrt{x_1 + x_2 + x_3 + \dots}$$

For a matrix,
$$|\mathbf{A}|_2 = \max_{|\mathbf{x}|=1} |\mathbf{A}\mathbf{x}|_2$$

- It turns out that the 2-norm of A is the maximum eigenvalue of A, and the Frobenius norm squared is the sum of the squares of the eigenvalues. To see this, take the 2-norm and Frobenius norm of a diagonalised matrix and note the 2nd lemma below.

<u>Lemma</u>: $|\mathbf{A}\mathbf{B}|_2 \leq |\mathbf{A}|_2 |\mathbf{B}|_2$

Pf: Let **y** be the value of **x** that maximises $|\mathbf{A}|_2 = \max_{|\mathbf{x}|=1} |\mathbf{A}\mathbf{x}|_2$.

Let z = By.

Then
$$|\mathbf{A}\mathbf{B}|_2 = |\mathbf{A}\mathbf{z}|_2 = |\mathbf{A}\frac{\mathbf{z}}{|\mathbf{z}|}|_2 |\mathbf{z}|_2 \le |\mathbf{A}|_2 |\mathbf{z}|_2 \le |\mathbf{A}|_2 |\mathbf{B}|_2 \text{ since } |\mathbf{z}|_2 \le |\mathbf{B}|_2$$

Lemma: Let Q be an orthonormal matrix. For all
$$\mathbf{x}$$
, $|\mathbf{Q}\mathbf{x}|_2 = |\mathbf{x}|_2$.
Pf: $|\mathbf{Q}\mathbf{x}|_2^2 = \mathbf{x}^T\mathbf{Q}^T\mathbf{Q}\mathbf{X} = \mathbf{x}^T\mathbf{x} = |\mathbf{x}|_2^2$ because $\mathbf{Q}^T = \mathbf{Q}^{-1}$, so $\mathbf{Q}^T\mathbf{Q} = \mathbf{1}$.

Lemma: Let Q be an orthonormal matrix. For all A, $|\mathbf{Q}\mathbf{A}|_2 = |\mathbf{A}|_2$.

Pf: This follows directly from the previous lemma.

These lemmas also hold for the Frobenius norm as well.

It is straightforward from this to show that for $A=U\Sigma V^T$, $|A|=|\Sigma|$ for both norms.

 $\underline{\text{Thm}}: \ \left| \mathbf{A} - \mathbf{A}^{(k)} \right| \leq \min_{\text{rank}(\mathbf{B}) \leq k} \left| \mathbf{A} - \mathbf{B} \right|. \ \text{In other words, } \mathbf{A}^{(k)} \text{ is the best rank-k approximation to } \mathbf{A} \text{ in }$

terms of total error (but not necessarily error of a given element, so this is not always "best" in every application). Proof next lecture. This is easy to prove for the 2-norm but very difficult for the Frobenius norm.