CS 485 Lecture 19 6 March 2006
Scribes: Jason Lui (jsI57) and Jeff Wong (jmw92)

Four generating functions from previous lecture

Deg: o, 01
Size: ho, hy
ho’(1) =1+ go’(1)ha’(2) (M
hy’(1) =1+g:’(1)hs’(1) (11

From (1), we have
h'(1)=1/[1 + 9.’ ()] (1)

Plugging (111) back to (1)
ho'(1) =1 +90"(1) /[1-9."(2)]
Therefore, point at which the giant components appears when g;’(1) = 1

We also know that:
0:°(1)=90’(1)/9’(1)=1 — 9o”’(1) =090’ (1)

By definition:

Jo(X) = Y P X"

0o’ () = TP X
0o”" (X) = Yk(k-1)P X2

Since go’’ (1) = go’(1), letx =1
2 kP =Y K(k-1)Py

Y (k?-2k)P = 0

Yk(k-2)Py=0

This is the end of random graph materials.

High Dimensional Data
10° papers
25,000 dimensional vector to represent the words used in the papers

This is a very large dimension, so we can randomly select a 300 dimensional subspace and
project all the data points to such subspace. In fact, we can pick a subspace such that we
minimize the error between data and its projection.

SVD: Singular Value Decomposition
Let A be the 10°x25000 matrix of data from your set of papers. Any matrix A can be rewritten
as A=UZV" where U and V are orthonormal and X is diagonalised:




X= o with 61> 02> 03> ... > on
0 o
Create a new matrix = by keeping only the k largest ¢’s in X:

o1

o, 0
=W = .

0 .
0
Then write A®¥ = yx®vT,
What is the error between A and A®?

Norms
- Frobenius norm: |A|2F =" a} = sum of squares of all of the elements of A.

Let a; be the ith column of A. Then (ATA); = (a)"a;.

So Tr(ATA) = =i(ai) "a; = Ziail* = sum of squares of elements of A :|A|i
- 2-norm:

For a vector X = (X1,Xz,...Xn), [X|, = /% + X, + X + ...

For a matrix, |A| - max|Ax|
|x|=1

- It turns out that the 2-norm of A is the maximum eigenvalue of A, and the Frobenius norm
squared is the sum of the squares of the eigenvalues. To see this, take the 2-norm and Frobenius
norm of a diagonalised matrix and note the 2" lemma below.

Lemma: |AB|, <|A|,|B],
Pf. Lety be the value of x that maximises |A|, = m‘ai<|Ax|

Let z = By.

Then g, =, =| 7 2, <A, <A B, sine 2, <[

Lemma: Let Q be an orthonormal matrix. For all x, |Qx]2 = |X[2.
Pf: |Qx|2* = x'Q"QX = x"x = |x|,* because Q"=Q*, so Q'Q=1.
Lemma: Let Q be an orthonormal matrix. For all A, |QA|2 = |Al..
Pf: This follows directly from the previous lemma.
These lemmas also hold for the Frobenius norm as well.
It is straightforward from this to show that for A=UXV", |A|=|Z| for both norms.

A -B|. In other words, AY is the best rank-k approximation to A in

Thm: ‘A—A(k)‘ < min

rank(B)<k
terms of total error (but not necessarily error of a given element, so this is not always “best” in
every application). Proof next lecture. This is easy to prove for the 2-norm but very difficult for
the Frobenius norm.



