Scribes: Jason Lui (jsl57) and Jeff Wong (jmw92)

## Four generating functions from previous lecture

Deg: $g_{0}, g_{1}$
Size: $\quad h_{0}, h_{1}$
$h_{0}{ }^{\prime}(1)=1+g_{0}{ }^{\prime}(1) h_{1}{ }^{\prime}(1)$
$h_{1}{ }^{\prime}(1)=1+g_{1}{ }^{\prime}(1) h_{1}{ }^{\prime}(1)$
From (II), we have
$h_{1}{ }^{\prime}(1)=1 /\left[1+g_{1}{ }^{\prime}(1)\right]$
Plugging (III) back to (I)
$h_{0}{ }^{\prime}(1)=1+g_{0}{ }^{\prime}(1) /\left[1-g_{1}{ }^{\prime}(1)\right]$
Therefore, point at which the giant components appears when $g_{1}{ }^{\prime}(1)=1$
We also know that:
$g_{1}{ }^{\prime}(1)=g_{0}{ }^{\prime}(1) / g_{0}{ }^{\prime}(1)=1 \quad \rightarrow \quad g_{0}{ }^{\prime \prime}(1)=g_{0}{ }^{\prime}(1)$
By definition:
$g_{0}(x)=\sum P_{k} x^{k}$
$g_{0}{ }^{\prime}(x)=\sum k P_{k} x^{k-1}$
$g_{0}{ }^{\prime \prime}(x)=\sum k(k-1) P_{k} x^{k-2}$

Since $g_{0}{ }^{\prime \prime}(1)=g_{0}{ }^{\prime}(1)$, let $\mathrm{x}=1$
$\sum k P_{k}=\sum k(k-1) P_{k}$
$\sum\left(k^{2}-2 k\right) P_{k}=0$
$\sum k(k-2) P_{k}=0$
This is the end of random graph materials.

## High Dimensional Data

$10^{6}$ papers
25,000 dimensional vector to represent the words used in the papers
This is a very large dimension, so we can randomly select a 300 dimensional subspace and project all the data points to such subspace. In fact, we can pick a subspace such that we minimize the error between data and its projection.

## SVD: Singular Value Decomposition

Let A be the $10^{6} \times 25000$ matrix of data from your set of papers. Any matrix A can be rewritten as $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$ where $\mathbf{U}$ and $\mathbf{V}$ are orthonormal and $\boldsymbol{\Sigma}$ is diagonalised:

$$
\Sigma=\left(\begin{array}{cccc}
\sigma_{1} & & & 0 \\
& \sigma_{2} & & \\
& & \ddots & \\
0 & & \sigma_{N}
\end{array}\right) \quad \text { with } \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots \geq \sigma_{\mathrm{N}}
$$

Create a new matrix $\boldsymbol{\Sigma}^{(\mathrm{k})}$ by keeping only the $k$ largest $\sigma$ 's in $\boldsymbol{\Sigma}$ :

$$
\Sigma^{(k)}=\left(\begin{array}{ccccccc}
\sigma_{1} & & & & & \\
& \sigma_{2} & & & & 0 & \\
& & \ddots & & & & \\
& & & \sigma_{k} & & & \\
& 0 & & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

Then write $\mathbf{A}^{(\mathrm{k})}=\mathbf{U} \mathbf{\Sigma}^{(\mathrm{k})} \mathbf{V}^{\mathrm{T}}$.
What is the error between $\mathbf{A}$ and $\mathbf{A}^{(\mathrm{k})}$ ?

## Norms

- Frobenius norm: $|\mathbf{A}|_{F}^{2}=\sum_{i, j} a_{i j}^{2}=$ sum of squares of all of the elements of $\mathbf{A}$.

Let $a_{\mathrm{i}}$ be the ith column of $\mathbf{A}$. Then $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)_{\mathrm{ij}}=\left(a_{\mathrm{i}}\right)^{\mathrm{T}} a_{\mathrm{j}}$.
So $\operatorname{Tr}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)=\Sigma_{\mathrm{i}}\left(a_{\mathrm{i}}\right)^{\mathrm{T}} a_{\mathrm{i}}=\Sigma_{\mathrm{i}}\left|a_{\mathrm{i}}\right|^{2}=$ sum of squares of elements of $\mathrm{A}=|\mathbf{A}|_{F}^{2}$

- 2-norm:

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{\mathrm{n}}\right),|\mathbf{x}|_{2}=\sqrt{x_{1}+x_{2}+x_{3}+\ldots}$
For a matrix, $|\mathbf{A}|_{2}=\max _{|\mathbf{x}|=1}|\mathbf{A x}|_{2}$

- It turns out that the 2-norm of A is the maximum eigenvalue of A , and the Frobenius norm squared is the sum of the squares of the eigenvalues. To see this, take the 2 -norm and Frobenius norm of a diagonalised matrix and note the $2^{\text {nd }}$ lemma below.

Lemma: $|\mathbf{A B}|_{2} \leq|\mathbf{A}|_{2}|\mathbf{B}|_{2}$
Pf: Let $\mathbf{y}$ be the value of $\mathbf{x}$ that maximises $|\mathbf{A}|_{2}=\max _{|\mathbf{x}|=1}|\mathbf{A x}|_{2}$.
Let $\mathbf{z}=\mathbf{B y}$.
Then $|\mathbf{A B}|_{2}=|\mathbf{A z}|_{2}=\left|\mathbf{A} \frac{\mathbf{z}}{\mid \mathbf{z}}\right|_{2}|\mathbf{z}|_{2} \leq|\mathbf{A}|_{2}|\mathbf{z}|_{2} \leq|\mathbf{A}|_{2}|\mathbf{B}|_{2}$ since $|\mathbf{z}|_{2} \leq|\mathbf{B}|_{2}$
Lemma: Let Q be an orthonormal matrix. For all $\mathrm{x},|\mathbf{Q x}|_{2}=|\mathbf{x}|_{2}$.
Pf: $|\mathbf{Q x}|_{2}{ }^{2}=\mathbf{x}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}} \mathbf{Q} \mathbf{X}=\mathbf{x}^{\mathrm{T}} \mathbf{x}=|\mathbf{x}|_{2}{ }^{2}$ because $\mathbf{Q}^{\mathrm{T}}=\mathbf{Q}^{-1}$, so $\mathbf{Q}^{\mathrm{T}} \mathbf{Q}=\mathbf{1}$.
Lemma: Let $Q$ be an orthonormal matrix. For all $\mathbf{A},|\mathbf{Q A}|_{2}=|\mathbf{A}|_{2}$.
Pf: This follows directly from the previous lemma.
These lemmas also hold for the Frobenius norm as well. It is straightforward from this to show that for $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}},|\mathbf{A}|=|\boldsymbol{\Sigma}|$ for both norms.

Thm: $\left|\mathbf{A}-\mathbf{A}^{(k)}\right| \leq \min _{\operatorname{rank}(\mathbf{B}) \leq k}|\mathbf{A}-\mathbf{B}|$. In other words, $\mathbf{A}^{(\mathrm{k})}$ is the best rank-k approximation to $\mathbf{A}$ in terms of total error (but not necessarily error of a given element, so this is not always "best" in every application). Proof next lecture. This is easy to prove for the 2-norm but very difficult for the Frobenius norm.

