
CS 485 Lecture 19         6 March 2006 
Scribes: Jason Lui (jsl57) and Jeff Wong (jmw92) 
 
Four generating functions from previous lecture 
Deg:  g0, g1 
Size: h0, h1 
 
h0’(1) = 1 + g0’(1)h1’(1)  (I) 
h1’(1) = 1 + g1’(1)h1’(1)  (II) 
 
From (II), we have 
h1’(1) = 1 / [1 + g1’(1)]  (III) 
 
Plugging (III) back to (I) 
h0’(1) = 1 + g0’(1) / [1 – g1’(1)] 
Therefore, point at which the giant components appears when g1’(1) = 1 
 
We also know that: 
g1’(1) = g0’’(1) / g0’(1) = 1 →   g0’’(1) = g0’(1) 
 
By definition: 
g0(x) = ∑Pk xk 
g0’(x) = ∑kPk xk-1 
g0’’(x) = ∑k(k-1)Pk xk-2 

 

 

Since g0’’(1) = g0’(1), let x = 1 
∑kPk = ∑k(k-1)Pk 
∑(k2-2k)Pk = 0 
∑k(k-2)Pk = 0 
 
This is the end of random graph materials. 
 
 
 
High Dimensional Data 
106 papers 
25,000 dimensional vector to represent the words used in the papers 
 
This is a very large dimension, so we can randomly select a 300 dimensional subspace and 
project all the data points to such subspace. In fact, we can pick a subspace such that we 
minimize the error between data and its projection.   
 
SVD: Singular Value Decomposition 
Let A be the 106×25000 matrix of data from your set of papers.  Any matrix A can be rewritten 
as A=UΣVT where U and V are orthonormal and Σ is diagonalised: 
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    with σ1 ≥ σ2 ≥ σ3 ≥ … ≥ σN 

Create a new matrix Σ(k) by keeping only the k largest σ’s in Σ: 
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Then write A(k) = UΣ(k)VT.   
What is the error between A and A(k)? 
 
Norms 
 - Frobenius norm: ∑=
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22A = sum of squares of all of the elements of A. 

 Let ai be the ith column of A.  Then (ATA)ij = (ai)Taj. 
 So Tr(ATA) = Σi(ai)Tai = Σi|ai|2 = sum of squares of elements of A = 2
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 - 2-norm: 
 For a vector x = (x1,x2,…xn), K+++= 3212
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 For a matrix, 
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=  

 - It turns out that the 2-norm of A is the maximum eigenvalue of A, and the Frobenius norm 
squared is the sum of the squares of the eigenvalues.  To see this, take the 2-norm and Frobenius 
norm of a diagonalised matrix and note the 2nd lemma below. 
 
Lemma: 

222
BAAB ≤  

     Pf: Let y be the value of x that maximises 
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Let z = By. 

Then 
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Lemma: Let Q be an orthonormal matrix.  For all x, |Qx|2 = |x|2. 
     Pf:  |Qx|22 = xTQTQX = xTx = |x|22 because QT=Q-1, so QTQ=1. 
Lemma: Let Q be an orthonormal matrix.  For all A, |QA|2 = |A|2.   
     Pf: This follows directly from the previous lemma.   
These lemmas also hold for the Frobenius norm as well.   
It is straightforward from this to show that for A=UΣVT, |A|=|Σ| for both norms.   
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)( min .  In other words, A(k) is the best rank-k approximation to A in 

terms of total error (but not necessarily error of a given element, so this is not always “best” in 
every application).  Proof next lecture.  This is easy to prove for the 2-norm but very difficult for 
the Frobenius norm.   


