CS485 scribe notes 3/3/2006
Victor Kwok
Jason Lui
$\mathrm{g}^{\prime}=1 / 2 \mathrm{~d}^{*}(1-\mathrm{g} / \mathrm{x}) /(1-\mathrm{g})$
If $g(1)!=1$, there exists an infinite component containing $1-\mathrm{g}(1)$ fractions of vertices. Average size of finite components is $g^{\prime}(1)=1 / 2 d$

If $g(1)=1$ then there is no infinite component, $g^{\prime}(x)$ is indeterminate, so we use L^{\prime} Hoptal rule to get a quadratic for $g^{\prime}(1)$. Solve it to get: $g^{\prime}(1)=[1+-\operatorname{sqrt}(1-8 d)] / 4 d$

If $\mathrm{d}>1 / 8$ average size of finite component is $1 / 2 \mathrm{~d}$ and there exists an infinite component. If $d \rightarrow 0$ there is no infinite component, $d_{c}=1 / 8$

$$
\begin{aligned}
G^{\prime}(1) & =1-\left[1-0.5(8 d)-0.25(4 d)^{2}-\ldots\right] / 4 d \\
& =\left(4 d+16 d^{2}+\ldots\right) / 4 d \rightarrow 1
\end{aligned}
$$

Average size of finite component:
Before $\mathrm{d}_{\mathrm{c}}: \quad[1-\operatorname{sqrt}(1-8 \mathrm{~d})] / 4 \mathrm{~d} \quad$ at $\mathrm{d}=4 \quad \rightarrow 2$
After $\mathrm{d}_{\mathrm{c}}: 1 / 2 \mathrm{~d} \quad \rightarrow 4$

Four Generating Functions

$g_{0}(x)=$ degree of vertex selected at random
$g_{1}(x)=$ out degree of vertex reached by following random edge
$h_{0}(x)=$ size of component of random vertex
$h_{1}(x)=$ size of component by following edge to end point and exploring outgoing edges

Let P_{k} be the probability that vertex selected at random has degree k $g_{0}(x)=\sum P_{k} x^{k}$

So,
$g_{1}(x)=1 / x *\left[x g_{0}{ }^{\prime}(x) / g_{0}{ }^{\prime}(1)\right]$
$g_{1}{ }^{\prime}(x)=g_{0}{ }^{\prime}{ }^{\prime}(x) / g_{1}{ }^{\prime}(1)$
Hence,
$g_{0}{ }^{\prime}{ }^{\prime}(1)=g_{0}{ }^{\prime}(1) g_{1}{ }^{\prime}(1)$

Size of Components

Let q_{k} be probability that a vertex reached has k outgoing edges, then
$h_{1}(x)=x q_{0}+x q_{1} h_{1}(\mathrm{x})+x q_{2} h_{1}^{2}(x)+x q_{3} h_{1}^{3}(x)+\ldots$
q^{k} is coefficient of x^{k} in $g_{1}(x)=q_{0}+q_{1} x+q_{2} x^{2}+\ldots$
Hence,
$h_{1}(x)=x q_{1}\left(h_{1}(\mathrm{x})\right)$

Using the same P_{k} defined earlier, we have
$h_{0}(x)=x P_{0}+x P_{1} h_{1}(x)+x P_{1} h_{1}^{2}(x)+\ldots=x g_{0}\left(h_{1}(x)\right)$
Average size of component of a randomly chosen vertex, assuming no giant component $h_{0}{ }^{\prime}(1)=\left.h_{0}{ }^{\prime}(x)\right|_{x=1}=g_{0}\left(h_{1}(x)\right)+\left.x g_{0}{ }^{\prime}\left(h_{1}(x)\right) h_{1}{ }^{\prime}(x)\right|_{x=1}$
$=1+g_{0}{ }^{\prime}(1) h_{1}{ }^{\prime}(1)$
$h_{1}{ }^{\prime}(x)=g_{1}\left(h_{1}(x)\right)+\left.x g_{1}{ }^{\prime}\left(h_{1}(x)\right) h_{1}{ }^{\prime}(x)\right|_{x=1}$
Therefore,
$h_{1}{ }^{\prime}(1)=1+g_{1}{ }^{\prime}(1) h_{1}{ }^{\prime}(1)$
$h_{0}{ }^{\prime}(1)=1+g_{0}{ }^{\prime}(1) h_{1}{ }^{\prime}(1)$

