CS485 scribe notes 3/3/2006 Victor Kwok Jason Lui

g' = 1/2d \* (1-g/x)/(1-g)

If g(1) != 1, there exists an infinite component containing 1- g(1) fractions of vertices. Average size of finite components is g'(1) = 1/2d

If g(1) = 1 then there is no infinite component, g'(x) is indeterminate, so we use L' Hoptal rule to get a quadratic for g'(1). Solve it to get: g'(1) = [1 + sqrt(1-8d)]/4d

If d > 1/8 average size of finite component is 1/2d and there exists an infinite component. If  $d \rightarrow 0$  there is no infinite component,  $d_c = 1/8$ 

G'(1) = 1 -  $[1 - 0.5(8d) - 0.25(4d)^2 - ...] / 4d$ 

$$= (4d + 16d^2 + \dots) / 4d \rightarrow 1$$

Average size of finite component:

| Before d <sub>c</sub> : | [1 - sqrt(1-8d)] / 4d | at $d = 4$ | $\rightarrow 2$ |
|-------------------------|-----------------------|------------|-----------------|
| After d <sub>c</sub> :  | 1/2d                  |            | $\rightarrow 4$ |



## **Four Generating Functions**

- $g_0(x) =$  degree of vertex selected at random
- $g_1(x)$  = out degree of vertex reached by following random edge
- $h_0(x)$  = size of component of random vertex
- $h_1(x)$  = size of component by following edge to end point and exploring outgoing edges

Let  $P_k$  be the probability that vertex selected at random has degree k  $g_0(x) = \sum P_k x^k$ 

So,  $g_1(x) = 1/x * [x g_0'(x) / g_0'(1)]$   $g_{1'}(x) = g_0''(x) / g_1'(1)$ Hence,  $g_0''(1) = g_0'(1)g_1'(1)$ 

## Size of Components

Let  $q_k$  be probability that a vertex reached has k outgoing edges, then  $h_1(x) = x q_0 + x q_1 h_1(x) + x q_2 h_1^{2}(x) + x q_3 h_1^{3}(x) + \dots$   $q^k$  is coefficient of  $x^k$  in  $g_1(x) = q_0 + q_1 x + q_2 x^2 + \dots$ Hence,  $h_1(x) = x q_1(h_1(x))$ 

Using the same  $P_k$  defined earlier, we have  $h_0(x) = x P_0 + x P_1 h_1(x) + x P_1 h_1^2(x) + \ldots = x g_0(h_1(x))$ 

Average size of component of a randomly chosen vertex, assuming no giant component  $h_0'(1) = h_0'(x)|_{x=1} = g_0(h_1(x)) + x g_0'(h_1(x)) h_1'(x)|_{x=1}$   $= 1 + g_0'(1) h_1'(1)$  $h_1'(x) = g_1(h_1(x)) + x g_1'(h_1(x)) h_1'(x)|_{x=1}$ 

Therefore,  $h_1'(1) = 1 + g_1'(1) h_1'(1)$  $h_0'(1) = 1 + g_0'(1) h_1'(1)$