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Branching Processes 

 

We know that the process either goes to extinction or grows forever. However, it cannot be the case 

that the process comes to a stage where the number of children in the j
th

 generation hovers about a 

constant, c. 

 

 

Random Walks 

 

Examining the frontiers of a tree (i.e. by doing a breadth first search). Pick a vertex and let it be our 

first frontier, F1.     

     

 

    Explore F1’s children. Generalizing, we get: 

 

Fi+1 = Fi – 1 + Xi 

 

 

Suppose we represent the frontiers’ sizes as follows: 

 

 

 

 

 

 

 

 

 

Then if our current frontier Fi is of size 0, we know with probability 1 that future frontiers will also 

have size 0. 

 

 

 

 

 

 

Likewise, if our current frontier Fi is of size 1, then the probability that by exploring the children of Fi, 

the size of Fi+1 is 1, 2, 3, etc is: 
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where P0 is the probability of having 0 children, etc. And for a frontier Fi of size 2, we have: 

 

 

 

 

 

 

If this random walk has a limiting/stationary distribution, what can it look like? The probability of 

being in vertex 1 cannot be nonzero, since if it were, this would change the probability of being in 

vertex 0 at the next time step, contradicting the fact that we have a stationary distribution. Likewise, 

No other vertex c for some constant c can have a nonzero probability. This leaves us with vertex 0 

having some probability q, which need not be 1, just as we had deduced before. 

 

 

Sum of n Random Variables with Identical Distributions 

 

The expected value of the sum of n random variables, each with identical distributions is given by: 

 

 x1 + x2 + x3 + … + xn = E(x1) + E(x2) + E(x3) + … + E(xn) 

 

and since their distributions are the same, the expected values of each individual xi is also identical, 

giving: 

 

 x1 + x2 + x3 + … + xn = n(xi) 

 

Note that the above did not constrain the xi’s to be independent. What if n itself is a random variable? 

For example, what is the number of children in the 2
nd

 generation below?  

 

 

 Where we know the expected number of children in the 

first generation is given by n. Furthermore, each of the n 

children has xi children, where the xi’s have the same 

distribution as n. 

 

 

 

 

 

 

 

 

Claim : Provided that n and the xi’s are independent of each other, we can write the expected number 

of children in the 2
nd

 generation as: 
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Proof :  
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 = Pr[n = 1 & x1 = 1] + 2Pr[n = 1 & x1 = 2] + … + iPr[n = 1 & x1 = i] + … 

      + Pr[n = 2 & x1 = 1] + 2Pr[n = 2 & x1 = 2] + … + iPr[n = 2 & x1 = i] + … 

 

      + Pr[n = 2 & x2 = 1] + 2Pr[n = 2 & x2 = 2] + … + iPr[n = 2 & x2 = i] + … 

 

 

Since n and the xi’s are independent, Pr[n = a & xi = b] is equal to Pr[n = a]Pr[xi = b]. Factoring out the 

Pr[n = a]’s, we have: 
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       + Pr[n = 2] (Pr[x1 = 1] + 2Pr[x1 = 2] + … + iPr[x1 = i] + …) + … 

 

      + Pr[n = 2] (Pr[x2 = 1] + 2Pr[x2 = 2] + … + iPr[x2 = i] + …) + … 

 

which is equivalent to  
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 = Pr[n = 1] E(x1) + Pr[n = 2] E(x1) + Pr[n = 2] E(x2) + … 

 

Finally, factoring out the E(xi)’s, we have: 
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 = (Pr[n = 1] + 2Pr[n = 2] + 3Pr[n = 3] + …) E(x1) 

   = E(n) E(x1) 

 

 

Note on Independence of Random Variables 

 

If we have 2 events A and B that are independent of each other and each occurs with probability p = 

0.5, then A and B can be represented in the probability space as: 
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In this case, the probability that both A and B occur is simply the product of the probabilities that each 

occur. Pr[A and B] = Pr[A] Pr[B] = ¼ in our case. 

 

This is not true if A and B are not independent. For example, if BA ¬= , then Pr[A and B] = 0. 

Building Graphs with Structure 

 

Consider the following n x n matrix, where each (i, j) cell is given value 1 with probability 
n

1
 and 0 

with probability 
n

n−1
. 
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Suppose we now split this matrix into 4 smaller matrices, such that 
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This results in a graph that has 2 components, where there are many edges between vertices within the 

same component and fewer edges between vertices from different components: 

 

 

 

 

 

 

 

 

 

 

 

We could then such matrices with one another: 
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Non-Uniform Degree Model 

 

One way to create such a model is to fix the degree of each vertex: 
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where M is a structured matrix and di is the degree of vertex i. 

 

 

Grown Graph 
 

Start with an empty graph. At each unit of time, add 1 vertex to the graph and pick two vertices u and v 

currently present in the graph and with probability p, add and edge between them. 

 

 

 

 

 

 

 

 

 

 

 

 

One observation from this model is that there tends to be a core where the edge concentration is high. 

This is due to the fact that during the initial stages of the growing the graph, only a few vertices are 

present. Hence, the probability of edges being present within this few vertices are high, and therefore 

the density of edges will also be high. 
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Random Graph with Given Degree Distribution 

 

Let iλ be the fraction of the vertices with degree i.  

 

Claim : A phase transition occurs when 
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Suppose we start off at a vertex, and explore its children.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the (i – 2) part of the above equation represents the net gain in the frontier’s size. The factor 

of iλ  makes sense since we have to account for how many vertices of a degree we have in our graph. 

However, why the remaining factor of i? Loosely, the frequency with which we will encounter a vertex 

of a certain degree depends not only on how many such vertices are in the graph, but on the degree 

itself. This is because there are more ways to get to a vertex with higher degree than it is to get to a 

vertex with a low degree. 

 

 

Other Models 

 

Other models include adding edges by selecting 2 vertices proportionate to their current degrees. This 

way, nodes with higher degrees go even higher (‘rich gets richer’). 
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