There is a whole host of generating functions and we will be discussing one more type known as the exponential generating function.

## Exponential Generating Function

$\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2} \leftrightarrow \mathrm{~g}(\mathrm{x})=\sum_{i=0}^{\infty} a_{i}\left(\frac{x^{i}}{i!}\right)$

## Moment Generating Functions

$E\left(\mathrm{x}^{\mathrm{k}}\right)$ is the $\mathrm{k}^{\text {th }}$ moment about the origin
Clarification: These moments tell us about integrating the $k^{\text {th }}$ power. For example, the first moment is the average. The second moment is the squared distance away from the origin. If you have all of the moments, then you have the $p d f$.

$$
\psi(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} p(x) d x=\int_{-\infty}^{\infty}\left[1+t x+\frac{(t x)^{2}}{2!}+\ldots\right] p(x) d x
$$

The $\mathrm{k}^{\text {th }}$ moment of x is k ! times coefficient of $\mathrm{t}^{\mathrm{k}}$ in the moment generating function.
Explanation: Fourier Transforms: transforms one domain to another. An example is representing music in terms of its sound frequency.

Probability distribution $\mathrm{p}(\mathrm{x}) \leftrightarrow \psi(t) / / F u n c t i o n$ of time to function of frequency

## Fourier Transform

$$
\int_{-\infty}^{\infty} e^{t x \sqrt{-1}} p(x) d x
$$

The moment generating function has all of the properties of the Fourier transform.
One usage of the Fourier transform with respect to distribution is the following:

## Gaussian Probability Distribution

Assume mean $=0$ and unit variance ( $\sigma^{2}=1$ ),
$\mathrm{p}(\mathrm{x})=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$
First, we calculate the moments:
$\mu_{n}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{n} e^{-\frac{x^{2}}{2}} d x$

$$
\begin{aligned}
& \mu_{n}= \begin{cases}\frac{n!}{2^{\frac{n}{2}}\left(\frac{n}{2}\right)!} & \mathrm{n} \text { even //Use by parts to get recurrence relation: } \mu_{n}=(n-1) \mu_{n-2} \\
0 & \mathrm{n} \text { odd //Because } e^{-\left(\frac{x^{2}}{2}\right)} \text { is symmetric } \\
\mu_{0}=1 & \\
\mu_{1}=0 \\
\mathrm{~g}(\mathrm{~s}) \quad=\sum_{n=0}^{\infty} \frac{\mu_{n}}{n!} s^{n} \\
=\sum_{n=0 \& e v e n}^{2^{2}} \frac{n!}{\frac{n}{2}\left(\frac{n}{2}\right)!} \frac{1}{n!} s^{n}\end{cases}
\end{aligned}
$$

To change the indices, let $n=2 i$,

$$
=\sum_{i=0}^{\infty} \frac{s^{2 i}}{2^{i}(i)!}=\sum_{i=0}^{\infty} \frac{1}{i!}\left(\frac{s^{2}}{2}\right)^{i}
$$

since $e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}, \mathrm{g}(\mathrm{x})=e^{\frac{s^{2}}{2}} / /$ This is the moment generating function for Gaussian
In general $\mathrm{g}(\mathrm{s})=e^{s \mu+\frac{\sigma^{2} \mathrm{~s}^{2}}{2}}$

Question: What is the probability distribution of the sum of two Gaussian probability distributions?
$\mathrm{X}_{1}$

$$
\mu_{1}, \sigma_{1} \leftrightarrow e^{s \mu_{1}+\frac{\sigma_{1}^{2} s^{2}}{2}}
$$

$\mathrm{x}_{2} \quad \mu_{2}, \sigma_{2} \leftrightarrow e^{s \mu_{2}+\frac{\sigma_{2}^{2} s^{2}}{2}}$
$\mathrm{x}_{1}+\mathrm{x}_{2}$

$$
e^{\left(\mu_{1}+\mu_{2}\right) s+\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) s^{2}}{2}}+e^{s \mu_{2}+\frac{\sigma_{2}^{2} s^{2}}{2}}
$$

Conclusion: Result is Gaussian even if you add the two.
We now need to know the Catalan of numbers via the generating functions.

## Catalan Numbers

Balanced parentheses of length 2 n :
$c_{0}=1$
$c_{1}=1$
$c_{2}=2$
$c_{3}=5$
$\varepsilon$
()
() (), ( () )


The general structure is (A) B

$c_{i}=c_{0} c_{i-1}+c_{1} c_{i-2}+\ldots+c_{i-1} c_{0}$
//Convolution of sequence suggests squaring
Now let $\mathrm{c}(\mathrm{x})=\sum_{i=0}^{\infty} c_{i} x^{i}$
$c^{2}(x)=\sum_{i=0}^{\infty} c_{i} x^{i} \sum_{j=0}^{\infty} c_{j} x^{j}=c_{0}{ }^{2}+\left(c_{0} c_{1}+c_{1} c_{0}\right) x+\left(c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0}\right) x^{2}+\ldots$
Substituting $\mathrm{c}_{\mathrm{i}}$ for $\mathrm{c}_{0} \mathrm{c}_{\mathrm{i}-1}+\mathrm{c}_{1} \mathrm{c}_{\mathrm{i}-2}+\ldots$ we get
$c^{2}(x)=c_{1}+c_{2} x+c_{3} x^{2}+\ldots$
$c_{0}+x^{2}(x)=c_{0}+c_{1} x+c_{2} x^{2}+c 3 x^{3}+\ldots$
$\mathrm{c}_{0}+\mathrm{xc}^{2}(\mathrm{x})=\mathrm{c}(\mathrm{x})$
Substituting $\mathrm{c}_{0}=1$ and solve for $\mathrm{c}(\mathrm{x})$ yields
$\mathrm{xc}^{2}(\mathrm{x})-\mathrm{c}(\mathrm{x})+1=0 / /$ Use quadratic formula
$\mathrm{c}(\mathrm{x})=\frac{1 \pm \sqrt{1-4 x}}{2 x}$
Minus sign gives correct answer, so $\mathrm{c}(\mathrm{x})=\frac{1-\sqrt{1-4 x}}{2 x}$
We used $(1-y)^{1 / 2}=$
... //Refer to the last page for detailed calculations

$$
\begin{gathered}
\mathrm{c}(\mathrm{x})=\sum_{i=0}^{\infty} \frac{1}{1+i}\binom{2 i}{i} x^{i} \\
\mathrm{c}_{\mathrm{i}}=\frac{1}{i+1}\binom{2 i}{i}
\end{gathered}
$$

Catalan numbers are used in calculating the eigen value distributions, which is semicircular (1920, Physicist Wigner).

Alternative Approach: Let us look at number of strings of length 2 n with equal number of left and right parentheses is $\binom{2 n}{2} \quad \begin{aligned} & \text { //It is easiest to calculate the number of strings } \\ & \text { //that aren't balanced and subtract them off. }\end{aligned}$

Each of these strings is balanced unless there is a prefix with one more right than left parentheses.

( ( ) ) ) ) (
Flip left to right, right to left
$\mathrm{n}+1$ right parentheses
$\mathrm{n}-1$ left parentheses

$$
\begin{aligned}
c_{n} & =\binom{2 n}{n}-\binom{2 n}{n+1} \\
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n+1)!(n-1)!}=\frac{(2 n)!(n+1-(n))}{n!(n+1)!} \\
& =\frac{1}{n+1} \frac{(2 n)!}{n!n!}=\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

$c_{i}=\frac{1}{1+i}\binom{2 i}{i}$, which is the same result obtained from the other method.

## EXTRA: Details from the quadratic calculation

Minus sign gives correct answer, so $\mathrm{c}(\mathrm{x})=\frac{1-\sqrt{1-4 x}}{2 x}$

$$
\begin{aligned}
(1-4 x)^{1 / 2} & =1-\frac{1}{2} 4 x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)(4 x)^{2}}{2!}-\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)(4 x)^{3}}{3!}+\ldots \\
& =1-2 x+\frac{2^{2} x^{2}}{2!}-\frac{3(2 x)^{3}}{3!}-\ldots-\frac{3^{*} 5^{*} \ldots *(2 n-3) 2^{n} x^{n}}{n!}
\end{aligned}
$$

Since $1 * 3 * 5 * \ldots *(2 n-3)=\frac{(2 n)!}{(2 n-1) 2^{n} n!}$

$$
=1-\sum_{n=1}^{\infty} \frac{(2 n)!}{(2 n-1) 2^{n} n!} \frac{2^{n} x^{n}}{n!}
$$

Thus $\mathrm{c}(\mathrm{x})=\frac{1}{2 x} \sum_{n=1}^{\infty} \frac{(2 n)!x^{n}}{(2 n-1) n!n!}$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \frac{(2 n)(2 n-1)(2 n-2)!x^{n-1}}{2(2 n-1) n^{2}(n-1)!(n-1)!} \\
& =\sum_{n=1}^{\infty} \frac{(2 n-2)!x^{n-1}}{n(n-1)!(n-1)!} \\
& =\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n-1}
\end{aligned}
$$

Substituting $\mathrm{i}=\mathrm{n}-1$, gives you
$\mathrm{c}(\mathrm{x})=\sum_{i=0}^{\infty} \frac{1}{1+i}\binom{2 i}{i} x^{i}$

