Generating Function

Branching process:

Let P_{i} be the probability of i children.

Let $g(x)=\sum P_{i} X^{i}$ be the corresponding generating function.

Define jth iteration of $g(x)$

$$
\begin{gathered}
g_{1}(x)=g(x) \\
g_{2}(x)=g(g(x)) \\
\cdot \\
\cdot \\
g_{j}(x)=g_{j-1}(g(x))
\end{gathered}
$$

Two observations:
$\mathrm{g}^{2}(\mathrm{x})$ is the generating function for the sum of two independent random
variables $\mathrm{x}_{1}+\mathrm{x}_{2}$ where x_{1} and x_{2} have probability distribution Pi.

$$
g^{2}(x)=P_{0}^{2}+\left(P_{0} P_{1}+P_{1} P_{0}\right) x+\left(P_{1} P_{2}+P_{1} P_{1}+P_{2} P_{0}\right) x^{2}+\ldots
$$

For $\mathrm{x}_{1}+\mathrm{x}_{2}$ to have value 0 both x_{1} and x_{2} must have value zero.

For $x_{1}+x_{2}$ to have value 1 exactly one of x_{1}, x_{2} must have value 1 and then other have value 0 .

In generating $\mathrm{g}^{r}(\mathrm{x})$ is the generating function for $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{r}}$
$\mathrm{g}_{\mathrm{j}}(\mathrm{x})$ is generating function for number of children in jth generation of branching process.

Proof

By induction on j ,

By Induction Hypothesis,

$$
g_{j+1}(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{i} x^{i}+\ldots
$$

where coefficient of x^{i} is probability of i children in $\mathrm{j}-1$ level.

If i children in $\mathrm{j}-1$ generation, these will contribute in total $\mathrm{g}^{\mathrm{i}}(\mathrm{x})$

$$
\begin{aligned}
g_{j}(x)=b_{0} & +b_{1} g(x)+b_{2} g^{2}(x)+\ldots+b_{i} g^{i}(x) \\
& =g_{j-1}(g(x))
\end{aligned}
$$

Generating function for sequence defined by recurrence relationship.

$$
F_{0}=1, \quad F_{1}=1, \quad F_{i}=F_{i-1}+F_{i-2} \quad(i>=2)
$$

How do we get generating function for Fibonacci sequence?

$$
\begin{gathered}
f_{i} x^{i}=f_{i-1} x^{i}+f_{i-2} x^{i} \quad\left({ }^{*} x^{i} \text { on both sides }\right) \\
\sum\left(i=2,{ }^{\infty}\right) f_{i} x^{i}=\sum\left(i=2,{ }^{\infty}\right) f_{i-1} x^{i}+\sum\left(i=2,{ }^{\infty}\right) f_{i-2} x^{i} \\
\text { Let } f(x)=\sum\left(i=0,{ }^{\infty}\right) f_{i} x^{i} \\
f(x)-f_{1} x=x f(x)+x^{2} f(x) \\
f(x)-x f(x)-x^{2} f(x)=x \quad(b y \text { rearranging }) \\
f(x)=x /\left(1-x-x^{2}\right)
\end{gathered}
$$

Asymptotic Behavior

$$
f(x)=(\sqrt{ } 5 / 5) /\left(1-\varnothing_{1} x\right)+(\sqrt{ } 5 / 5) /\left(1-\varnothing_{2} x\right)
$$

where $\varnothing_{1}=(1+\sqrt{ } 5) / 2, \varnothing_{2}=(1-\sqrt{ } 5) / 2$

$$
\begin{gathered}
f(x)=(\sqrt{ } 5 / 5)\left[1+\varnothing_{1} x+\left(\varnothing_{1} x\right)^{2}+\ldots-\left(1+\varnothing_{2} x+\left(\varnothing_{2} x\right)^{2}+\ldots\right)\right] \\
f_{n}=(\sqrt{ } 5 / 5)\left(\varnothing_{1} n-\varnothing_{2} n\right) \quad\left|\varnothing_{2}\right|<1 \\
\left.f_{n}=\mathbf{L}_{(\sqrt{ } 5 / 5)}\right\rfloor \varnothing_{1} n \\
\left.\mathbf{L}_{n}+(\sqrt{ } 5 / 5) \varnothing_{2^{n}}\right\rfloor=(\sqrt{ } 5 / 5) \varnothing_{1} n
\end{gathered}
$$

Where $\lfloor\boldsymbol{\rfloor}$ sign is round down sign.

Let z be an integer valued random variable. Let p_{i} be probability that $z=i$

$$
\begin{gathered}
E(z)=\sum\left(i=0,{ }^{\infty}\right) i p_{i} \\
\text { Let } p(x)=\sum\left(i=0,{ }^{\infty}\right) p_{i} x^{i} \\
p^{\prime}(x)=\sum\left(i=0,{ }^{, \infty}\right) i p_{i} x^{i-1} \\
x p^{\prime}(x)=\sum\left(i=0,{ }^{\infty}\right) i p_{i} x^{i} \\
p^{\prime}(1)=\sum\left(i=0,{ }^{\infty}\right) i p_{i} \quad \leftarrow \text { mean }
\end{gathered}
$$

$$
a 0 a 1 a 2 \ldots \quad \leftarrow g(x)=\sum\left(i=0,{ }^{\infty}\right) a_{i}\left(x^{i} / i!\right)
$$

