Generating Function

Branching process:

Let P_i be the probability of i children.

Let $g(x) = \sum P_i X^i$ be the corresponding generating function.

Define jth iteration of g(x)

 $g_1(x) = g(x)$ $g_2(x) = g(g(x))$. . $g_j(x) = g_{j-1}(g(x))$

Two observations:

 $g^2(x)$ is the generating function for the sum of two independent random

variables x_1+x_2 where x_1 and x_2 have probability distribution Pi.

$$g^{2}(x) = P_{0}^{2} + (P_{0}P_{1} + P_{1}P_{0})x + (P_{1}P_{2} + P_{1}P_{1} + P_{2}P_{0})x^{2} + \dots$$

For x_1+x_2 to have value 0 both x_1 and x_2 must have value zero.

For x_1+x_2 to have value 1 exactly one of x_1 , x_2 must have value 1 and then other have value 0.

In generating $g^r(x)$ is the generating function for $x_1+x_2+...+x_r$

 $g_j(x)$ is generating function for number of children in jth generation of branching process.

Proof

By induction on j,

By Induction Hypothesis,

$$g_{j+1}(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_i x^i + \dots$$

where coefficient of x^i is probability of i children in j-1 level.

If i children in j-1 generation, these will contribute in total gi(x)

$$g_{j}(x) = b_{0} + b_{1}g(x) + b_{2}g^{2}(x) + \dots + b_{i}g^{i}(x)$$
$$= g_{j-1}(g(x))$$

Generating function for sequence defined by recurrence relationship.

 \Rightarrow e.g. Fibonacci sequence.

 $F_0 = 1$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2}$ (i>=2)

How do we get generating function for Fibonacci sequence?

$$f_i x^i = f_{i-1} x^i + f_{i-2} x^i$$
 (*xi on both sides)

 $\sum_{i=2,\infty} f_{i}x^{i} = \sum_{i=2,\infty} f_{i-1}x^{i} + \sum_{i=2,\infty} f_{i-2}x^{i}$

Let $f(x) = \sum_{i=0,\infty} f_i x^i$

 $f(x) - f_1x = xf(x) + x^2f(x)$

 $f(x) - xf(x) - x^2f(x) = x$ (by rearranging)

$$f(x) = x / (1 - x - x^2)$$

Asymptotic Behavior

$$f(x) = (\sqrt{5}/5) / (1 - \emptyset_1 x) + (\sqrt{5}/5) / (1 - \emptyset_2 x)$$

where $Ø_1 = (1+\sqrt{5}) / 2$, $Ø_2 = (1-\sqrt{5}) / 2$

$$f(x) = (\sqrt{5}/5) \left[1 + \emptyset_1 x + (\emptyset_1 x)^2 + \dots - (1 + \emptyset_2 x + (\emptyset_2 x)^2 + \dots)\right]$$

$$f_n = (\sqrt{5}/5) (\emptyset_1 n - \emptyset_2 n) | \emptyset_2 | < 1$$

$$f_n = \mathbf{L}(\sqrt{5/5}) \mathbf{J} \ \mathcal{Q}_1^n$$

$$\mathbf{L}f_{n} + (\sqrt{5}/5) \mathcal{Q}_{2^{n}} \mathbf{J} = (\sqrt{5}/5) \mathcal{Q}_{1^{n}}$$

Where $\ \ L \ \ J$ sign is round down sign.

Mean

Let z be an integer valued random variable. Let p_i be probability that z=i

$$E(z) = \sum_{i=0,\infty} ip_i$$

Let $p(x) = \sum_{i=0,\infty} p_i x^i$

 $p'(x) = \sum_{i=0,\infty} ip_i x^{i-1}$ $xp'(x) = \sum_{i=0,\infty} ip_i x^{i}$

 $p'(1) = \sum_{i=0,\infty} ip_i$ the mean

Exponential Generating function

a0a1a2...
$$\leftarrow \rightarrow g(x) = \sum_{i=0,\infty} a_i (x^i/i!)$$