




Monday February 13 Notes Part 2 
 
Back to cliques: 

 Consider G(n,
1
2 ). We showed earlier that you can clearly find a clique of size log 

n. There is also a clique of size 2 log n but we don't have an algorithm to find it. 
 
 
Matula: took 165 graphs, each with 32 vertices and Prob(edge existing between vertex i 

and vertex j)= 
1
2 . This is what he found: 

 
Clique size 5 6 7 8 

# of graphs 1 90 68 8 
 
As you can see, the size of the cliques are very highly concentrated. 
 
Let us rephrase the first sentence above: 
 For any ε > 0 almost surely G(n, ½) has a clique of size (2-ε) log n. 
 There is almost surely no clique of size 2 log n. 
 
Proof:  
 let f(k) be the expected # of cliques of size k.  
 
Let f(k) be the expected number of cliques of size k. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

2
1)(

k

k
n

kf . 

 
Now we need to prove 

∞→n
lim

    f( 2 log n) = 0   

 
and 
 

∞→n
lim

    f[(2-ε)]= ∞ ( by second moment) 
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 notice that the top grows faster than the bottom ( try taking the log of each). 
 Therefore this limit is infinity. 


