Lecture Notes for CS 485, 2/13/06
Proof that every increasing property in the $N_{p}$ system has a threshold.
Let $Q$ be any increasing property and $P(\delta)$ be the value which makes $\operatorname{Prob}\left(N_{p(\delta)} \in Q\right)=\delta$. Now consider $m$ samples drawn from $N_{p(\delta)}$ and construct their union such that if any integer appears in any of the in samples drawn from $N_{P(\delta)}$, then it also appears in the union. For example:

$$
[1,10,12]_{1} \cup[3,5,7]_{2} \cup \ldots \cup[1,5,6]_{m}=[1 \ldots 3 \ldots 5,6,7 \ldots 10 \ldots 12 \ldots]
$$

Notice that the new set behaves as if drawn directly from an ensemble of type $N_{p}$, but with a higher value for $p$ than $p(\delta)$. Call the union $N q$. The probability of $N g$ having any given integer is $\begin{aligned} q & =1-\operatorname{Prob}(\text { none of the samples contain the integer) } \\ & =1-\left(1-p(\delta) m^{2}\right.\end{aligned}$

$$
=1-(1-P(\delta))^{m}
$$

Since $Q$ is increasing, if any sample has property $Q$, then $N_{8}$ must also have $Q$. Also, $N_{q}$ may have $Q$, even if none of the samples do. Therefore
$\operatorname{Prob}\left(N_{q} \notin Q\right) \leq \operatorname{Prob}\left(\right.$ none of the m samples from $N_{P(\delta)}$ has $\left.Q\right)$

$$
\leq\left(1-\operatorname{Prob}\left(N_{P(\delta)} \in Q\right)\right)^{m} \quad \operatorname{Prob}\left(N_{P(\delta)} \in Q\right)=\delta \text { by def. }
$$

Now choose $\delta$ to be any number between 0 and $\frac{1}{2}$, and $m$ to be any number large enough that $(1-\delta)^{m} \leq \delta$. Then $\operatorname{Prob}\left(N_{q} \notin Q\right) \leq(1-\delta)^{m} \leq \delta$ so that
Eq 1: $\operatorname{Prob}\left(N_{q} \in Q\right)=1-\operatorname{Prob}\left(N_{q} \notin Q\right) \geq 1-\delta=\operatorname{Prob}\left(N_{p(1-\delta)} \in Q\right)$
Note that $q=1-(1-p(\delta))^{m} \leq m p(\delta)$ for $m \geq 1$.
Because $Q$ is an increasing property, then
$\operatorname{Prob}\left(N_{q} \in Q\right) \leq \operatorname{Prob}\left(N_{m p}(s) \in Q\right)$
After combing this information with Eq, we get.
$\operatorname{Prob}\left(N_{p(1-\delta)} \in Q\right) \leq \operatorname{Prob}\left(N_{m p}(\delta) \in Q\right)$ so that

$$
P(1-\delta) \leq m P(\delta)
$$

Because $\delta<\frac{1}{2}$ then $\delta<1-\delta$, so that

$$
P(\delta) \leq P(1-\delta)<m P(\delta)
$$

which proves that $Q$ has a threshold.

A property $Q$ has a threshold on the variable ' $p$ ' (which is a function of the system size, $n$ ) if for any $\delta$, $0<\delta<\frac{1}{2}$, the value of $p$ required to make $\operatorname{Prob}\left(N_{p} \in Q\right)=\delta$ may be multiplied by a constant, $m$, to make $\operatorname{Prob}\left(N_{\text {mp }} \in Q\right) \geq 1-\delta$. Therefore, no matter how close $\delta$ gets to 0 or $1-\delta$ gets to 1 , the transition of the system from a low probability of having $Q, \delta$, to a high probability of having $Q, 1-\delta$, happens within a constant factor, $m$. This can be stated as

$$
\forall 0>\delta>\frac{1}{2}, \exists m \text { sit. } P(\delta) \leq P(1-\delta) \leq m P(\delta)
$$

This can be seen graphically as


Back to cliques:
Consider $\mathrm{G}\left(\mathrm{n}, \frac{1}{2}\right.$ ). We showed earlier that you can clearly find a clique of size log n . There is also a clique of size $2 \log \mathrm{n}$ but we don't have an algorithm to find it.

Matula: took 165 graphs, each with 32 vertices and Prob(edge existing between vertex i and vertex j$)=\frac{1}{2}$. This is what he found:

| Clique size | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| \# of graphs | 1 | 90 | 68 | 8 |

As you can see, the size of the cliques are very highly concentrated.
Let us rephrase the first sentence above:
For any $\varepsilon>0$ almost surely $G(n, 1 / 2)$ has a clique of size $(2-\varepsilon) \log n$.
There is almost surely no clique of size $2 \log n$.
Proof:
let $f(k)$ be the expected $\#$ of cliques of size $k$.
Let $f(k)$ be the expected number of cliques of size $k$.

$$
f(k)=\binom{n}{k}\left(\frac{1}{2}\right)^{\binom{k}{2}}
$$

Now we need to prove
$\lim _{n \rightarrow \infty} f(2 \log n)=0$
and
$\lim _{n \rightarrow \infty} \mathrm{f}[(2-\varepsilon)]=\infty$ ( by second moment)
$f(2 \log n)=\binom{n}{2 \log n}\left(\frac{1}{2}\right)^{2 \log ^{2} n}$

$$
=\frac{n^{2 \log n}}{(2 \log n)!} \frac{1}{\left(2^{2 \log n}\right)^{2 \log n}}
$$

$$
\begin{aligned}
& =\frac{n^{2 \log n}}{(2 \log n)!* n^{2 \log n}} \\
& =\frac{1}{(2 \log n)!} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f}[(2-\varepsilon) \log \mathrm{n}] & =\binom{n}{(2-\varepsilon) \log \mathrm{n}}\left(\frac{1}{2}\right)^{\frac{(2-\varepsilon)^{2} \log ^{2} n}{2}} \\
& =\frac{n^{(2-\varepsilon) \log n}}{((2-\varepsilon) \log n)!} \frac{1}{n^{\left((2-\varepsilon)^{2} / 2\right) \log n}} \\
& =\frac{n^{\frac{\varepsilon}{2}(2-\varepsilon) \log n}}{((2-\varepsilon) \log n)!}
\end{aligned}
$$

$\Rightarrow$ notice that the top grows faster than the bottom ( try taking the log of each).
$\Rightarrow$ Therefore this limit is infinity.

