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1 Introduction

Two references:

Kumar, Raghavan, Rajapolan, Tomkins. Recommendation Systems: A Prob-

abilistic Analysis.

Jon Kleinberg and Mark Sandler. Using Mixture Models for Collaborative

Filtering.

We wish to find the probability matrix A where each entry gives the prob-
ability that a given buyer purchases a given item.





items

buyers A





m × n

However, this matrix tends to be too large to update efficiently. So we
subdivide the items into categories, and we rewrite A:





categories

A = buyers P









items

categories W





m × k k × n

where we use purchases of items as an approximation for W.
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If I have a rank k matrix A whose rows sum to 1, can I factor it into P and
W whose rows sum to 1? Yes. (We cannot guarantee the entries of P and W
will be in [0,1].)

First we factor A using spectral value decomposition.

A = U
∑

V = (U
∑

)
︸ ︷︷ ︸

P

V
︸︷︷︸

W

We normalize the rows of V to get W. Then we find P as follows: correct for
row normalization of W by normalizing columns of U

∑
.

Replace
∑n

ℓ=1 Aiℓ = 1 with
∑n

ℓ=1

∑k

j=1 PijWjℓ = 1

Then:

∑n

ℓ=1

∑k

j=1 PijWjℓ = 1

⇐⇒

∑k

j Pij

n∑

ℓ=1

Wjℓ

︸ ︷︷ ︸

1

= 1

⇐⇒

∑k

j Pij = 1

which confirms that if we normalize the columns of P we normalize the rows of
A.

2 Finding Categories

Two cases:

(1) clusters disjoint (where clusters ≡ categories)

(2) clusters can overlap

If we knew the categories and the categories were disjoint, we could calculate
W:






items

freq. of sales 0 . . .

W = category 0 freq. of sales . . .
...

...
. . .






if we know the number of items sold (which is just the sum of columns).

2



Let us define sample size = the number of items in a transaction.

We assume the sample size is always two (which is the minimum size we can
do something with). To enforce this, in any sales transaction, we just look at
the first two items sold.

We have two products i, j. We explore if the following equality is true:

Prob(i, j) = Prob(i)Prob(j)

If it is not true, then i and j are correlated. That means we might put them in
the same category.

3 Correlation Test for Model with Disjoint Clus-
ters (or Categories)

Let:
#(i) be number of occurrences of i

#(i,j) be the number of occurrences of a pair of items i and j.

frequency of i =

m∑

µ=1

PµC(i) ∗ ( WC(i)i
︸ ︷︷ ︸

doesn’t depend on user

) = WC(i)i

m∑

µ=1

PµC(i)

frequency of pair i, j =
m∑

µ=1

PµC(i)WC(i)iPµC(j)WC(j)j = WC(i)iWC(j)j

m∑

µ=1

PµC(i)PµC(j)

To determine if elements are in the same category consider two vectors

(P1C(i), P2C(i), . . . , PmC(i))WC(i)i

(P1C(j), P2C(j), . . . , PmC(j))WC(j)j

What if C(i), C(j) vectors are parallel? If C(i), C(j) vectors are distin-
guishable, vectors are not close to parallel.

Now we need to form a test (since we don’t know P directly).
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3.1 Test To Determine If Vectors are Parallel

If #(i) and #(j) are large, then #(i,j) is close to expected value of #(i,j).

E[#(i, j)] =
∑

µ

PµC(i)WC(i)iPµC(j)WC(j)j

Consider
E[#(i, j)]E[#(i, j)]

E[#(i, i)]E[#(j, j)]

=
WC(i)iWC(j)jWC(i)iWC(j)j

∑

µ PµC(i)PµC(j)

∑

µ PµC(i)PµC(j)

WC(i)iWC(i)iWC(j)jWC(j)j

∑

µ PµC(i)PµC(i)

∑

µ PµC(j)PµC(j)

=
(x · y)

2

(x)2(y)2
= cos2 θ

With E[#(i,j)]E[#(i,j)]
E[#(i,i)]E[#(j,j)] = cos2 θ we have an effective test for determining if

the two vectors are parallel.
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