1. Compare the Markov and Chebyshev bounds for the following probability distributions
a) $\quad p(x)= \begin{cases}1 & x=1 \\ 0 & \text { otherwise }\end{cases}$
b) $\quad p(x)= \begin{cases}\frac{1}{2} & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}$
2. Let $N=\{1,2, \cdots, n\}$ and let S_{k} be a random subset of N of size k. Consider the property P on S_{k} that S_{k} contains a 3-term arithmetic progression. Show that $n^{\frac{1}{3}}$ is a threshold for property P . An arithmetic progression is a sequence of integers of the form $a_{0}, a_{0}+b, a_{0}+2 b, \cdots$
3. Let M be the multi set formed by drawing pn integers from the set $\{1,2, \cdots, n\}$ with repetition.
a) How large must p be in order to have some integers appear twice?
b) Does a sharp transition occur?
c) How large must p be in order for every integer to occur in M_{p} ?
d) How does the frequency of occurrences of integers evolve with increasing p ?
4. Explain why two giant components cannot exist simultaneously.
