1. Compare the Markov and Chebyshev bounds for the following probability distributions

a) 
$$p(x) = \begin{cases} 1 & x = 1 \\ 0 & \text{otherwise} \end{cases}$$

b) 
$$p(x) = \begin{cases} \frac{1}{2} & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

- 2. Let  $N = \{1, 2, \dots, n\}$  and let  $S_k$  be a random subset of N of size k. Consider the property P on  $S_k$  that  $S_k$  contains a 3-term arithmetic progression. Show that  $n^{\frac{1}{3}}$  is a threshold for property P. An arithmetic progression is a sequence of integers of the form  $a_0, a_0 + b, a_0 + 2b, \cdots$
- 3. Let M be the multi set formed by drawing pn integers from the set  $\{1, 2, \dots, n\}$  with repetition.
- a) How large must p be in order to have some integers appear twice?
- b) Does a sharp transition occur?
- c) How large must p be in order for every integer to occur in  $M_p$ ?
- d) How does the frequency of occurrences of integers evolve with increasing p?
- 4. Explain why two giant components cannot exist simultaneously.