Your choice, either do problem 1 or do problems 2-5.

1. Write a program that will generate the URL's of $\mathrm{n}=1000$ web sites selected at random. Run your algorithm with $\mathrm{n}=10$ and turn in the 10 web sites with one or two words indicating what the web sites are. Fro example e-commerce site, someone's web page, or a journal article. The heart of your program will be a method to find random pages given some seed.
2. Prove that $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$
3. Prove that $\operatorname{trace}\left(A^{2}\right) \neq(\operatorname{trace}(A))^{2}$ but that $\operatorname{trace}\left(A^{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{n}^{2}$
4. Consider a random walk on an undirected graph. Give conditions on the graph for the probability to converge to a stationary probability. Hint: For bipartite graphs the probability oscillates and for a single cycle the probability does not converge.
5. Calculate the moments of $\frac{2}{\pi} \sqrt{1-x^{2}}$.
