A multi-tape TM has:

- finite state set
- finite (possibly > 1) number of infinite tapes (Input is always on first tape.)
- read/write head for each tape, capable of moving independently.
- transition function

Single tape:

\[S(p, a) = (q, b, L/R) \]

k tapes:

\[S(p, a_1, \ldots, a_k) = (q, b_1, \ldots, b_k, d_1, \ldots, d_k) \]

- new symbol to write
- directions to move
- on each tape
- R/W head
- Can be L, R, or stay still

\[S(p, b, u, b) = (q, a, b, a, <, <, \downarrow) \]
A single tape TM can simulate a multi-tape one.

Simulating M with k tapes and tape alphabet Γ, we will use single-tape machine S with tape alphabet $\Gamma^{k} \times \{0,1\}^{k}$.

Configuration: The state of a TM, the position of (each) read-write head, and the contents of (each) tape, omitting the infinite sequence of blanks at the end of the tape.

A finite amount of data, that completely describes the state of a computation.

S makes a left-to-right pass, memorizing (in its internal state) each symbol M is reading, then it goes right-to-left, implementing one step of M’s transition rule by overwriting symbols and repositioning simulated read-write heads.
Multi-tape TM is the accepted way to quantify space/time complexity of algorithms.

Universal Turing Machine: A machine U, that gets an input $M \# x$ where M describes another TM and x describes the input to M, and U simulates what happens when M processes input x.

Description of a Turing machine M:
1. A sequence of 0's and 1's starting with $0^1 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0$

 - $n = \# \text{states}$
 - $s = \text{start state}$
 - $m = \# \text{tape symbols}$
 - $t = \text{accept}$
 - $v = \text{blank}$
 - $r = \text{reject}$

2. The description of the transition function:
 A sequence of $\{0,1\}$-strings, in a standardized format:
 $\delta(p,c) = (q,b,L)$ encoded as $0^1 1^0 10^1 0^1 0^1 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0 1^0$

Description of input x: sequence of $\{0,1\}$-strings where symbol $x_i \in \Gamma = \{m\}$ is encoded as $0^x_i 1$.

\[\text{End of Description}\]
The string $X = (x_1, x_2, x_3, ..., x_a)$ is encoded as $0^{x_1}10^{x_a}1 ... 0^{x_1}1$.

Input to U is $M \# x$ in input alphabet $\{0, 1, \# \}$.

To say U is a universal TM means:
- if M accepts x, U must accept $M \# x$.
- if M rejects x, U must reject $M \# x$.
- if M loops on x, U must loop on $M \# x$.

How does U work?

3 tapes: input tape (read only: stores $M \# x$), working tape (stores configuration of M in the simulation), state tape (stores description of M's state in the simulation).