Plan

* Beating Brute Force for 3SAT

* Announcements

* Orthogonal Vectors solves CNF-SAT
CNF-SAT

Given a CNF $\varphi = C_1 \land C_2 \land \ldots \land C_m$

Does there exist $\overline{a} \in \{0,1\}^n$ s.t. $\varphi(\overline{a}) = 1$?

$C_i = (d_i \lor d_{i_2} \lor d_{i_3} \lor \ldots \lor d_{i_n})$

3SAT

CNF-SAT where each clause has at most 3 literals
Brute Force SAT (4)

For each \(a \in \{0,1\}^n \). // \(2^n \) possible assignments
Evaluate \(\Phi(a) \). // poly(n,m)
if \(\Phi(a) = 1 \) \(\rightarrow \) Return

Return \(X \)

Running Time? \(\rightarrow \) \(2^n \cdot \text{poly}(n,m) \)
Brute Force SAT \((\Psi) \)

For each \(a \in \{0,1\}^n \) \(// \ 2^n \) possible assignments

Evaluate \(\Psi(a) \) \(// \) poly\((n,m)\)

if \(\Psi(a) = 1 \) \(\rightarrow \) Return \(\checkmark \)

Return \(\times \)

Running Time? \(\rightarrow \) \(2^n \cdot \text{poly}(n,m) \)

Can we do better?

\(\Rightarrow \) e.g. for 3SAT?
Given \mathcal{F}, $l_i \in \mathcal{F} \xi_i, \neg \xi_i \in \mathcal{F}$

Let $\mathcal{F} \vert_{l_i=b}$ be the simplification of \mathcal{F} after setting all occurrences of ξ_i consistent with $l_i = b$.
Given \mathcal{Y}, $\mathcal{Y} \in \mathcal{F}_{X_i, \neg X_i}$. Let $\mathcal{Y} \mid_{l_i=b}$ be the simplification of \mathcal{Y} after setting all occurrences of X_i consistent with $l_i = b$. Then

$$\mathcal{Y} = (x_i \lor \neg x_3) \land (\neg x_1 \lor x_5) \land (x_2 \lor x_4 \lor x_5)$$

$$\mathcal{Y} \mid_{\neg x_i = 1} = (x_i \lor \neg x_3) \land (\neg x_1 \lor x_5) \land (x_2 \lor x_4 \lor x_5)$$
Given ϕ, let $l_i \in \exists x_i, \neg x_i \Sigma$

Let $\phi \mid_{l_i=b}$ be the simplification of ϕ after setting all occurrences of x_i consistent w/ $l_i = b$.

$$\phi = (x_i \lor \neg x_3) \land (\neg x_i \lor x_5) \land (x_2 \lor x_4 \lor x_5)$$

$$\phi \mid_{\neg x_i = 1} = (x_i \lor \neg x_3) \land (\neg x_i \lor x_5) \land (x_2 \lor x_4 \lor x_5)$$
Branch $3SAT(\varphi)$ (Monien-Speckmeyer '86)

if φ is a 2-CNF
 solve $2SAT(\varphi)$ in polynomial time.
else, find some clause $C = (l_1 \lor l_2 \lor l_3)$

Return \[\left(\text{Branch } 3SAT \left(\varphi \mid l_1 = 1 \right) \right. \]
\[\left. \lor \text{Branch } 3SAT \left(\varphi \mid l_1 = 0, l_2 = 1 \right) \right) \]
\[\lor \text{Branch } 3SAT \left(\varphi \mid l_1 = 0, l_2 = 0, l_3 = 1 \right) \]

Correctness

At least 1 of l_1, l_2, l_3 must be set to 1.
Branch 3SAT (Ψ) Makes 3 Recursive calls

Branch 3SAT ($\Psi | l_1 = 1$)

Branch 3SAT ($\Psi | l_1 = 0, l_2 = 1$)

Branch 3SAT ($\Psi | l_1 = 0, l_2 = 0, l_3 = 1$)

Running Time?

For n-variable 3-CNFs

$$T(n) \leq T(n-1) + T(n-2) + T(n-3) + \text{poly}(n)$$
Branch 3SAT (\(\Psi\))

Makes 3 Recursive calls

\[
\begin{align*}
&\text{Branch 3SAT } (\Psi | l_1 = 1) \\
&\text{Branch 3SAT } (\Psi | l_1 = 0, l_2 = 1) \\
&\text{Branch 3SAT } (\Psi | l_1 = 0, l_2 = 0, l_3 = 1)
\end{align*}
\]

Running Time?

For \(n\)-variable 3-CNFs

\[
T(n) \leq T(n-1) + T(n-2) + T(n-3) + \text{poly}(n)
\]

\[
\Rightarrow \\
T(n) \leq 1.833^n
\]
Announcements

* Prelim Review, April 9, 7-9pm Gates 401

* Prelim #2, April 11, 7:30pm

 → Room assignments announced after break
 → Covering
 - Divide & Conquer
 - Flow
 - NP - Completeness

* Have a great spring break!
Orthogonal Vectors Problem (OV)

Given two lists A, B each of N vectors over \mathbb{R}_0^m

Does there exist

\[1 \leq i, j \leq N \text{ s.t. } A_i \text{ and } B_j \text{ are orthogonal?} \]

\[A_i \cdot B_j = \sum_{u=1}^{m} A_{iu} \cdot B_{ju} = 0 \]
Orthogonal Vectors Problem (OV)

Given: Two lists A, B each of N vectors over $\mathbb{F}_0,1^m$

Does there exist $1 \leq i,j \leq N$ s.t. A_i and B_j are orthogonal?

Naive OV:

For $i = 1 \ldots N$

For $j = 1 \ldots N$

Test if $A_i \cdot B_j = 0$

Running Time $N^2 \cdot m$

$A_i \cdot B_j = \sum_{k=1}^{m} A_{ik} \cdot B_{jk} = 0$
Theorem. (Due to Ryan Williams, former 4820 student!)

If there exists an $N^{1.9}$ time algorithm for OV, then there exists a 1.94^n time algorithm for CNF-SAT.
Theorem. (Due to Ryan Williams, former 4820 student!)

If there exists an $N^{1.9}$ time algorithm for OV, then there exists a 1.94^n time algorithm for CNF-SAT.

This would be a MAJOR breakthrough in Algorithms & Complexity Theory.
Idea. Reduce CNF-SAT \rightarrow OV.

Exponential-time reduction

Given \(\Phi = C_1 \land C_2 \land \ldots \land C_m \)

write down

\[A \quad \text{N} = 2^{n/2} \quad \text{m} \]

\[B \quad \text{N} = 2^{n/2} \quad \text{m} \]

based on "partial assignments"
Partial Assignments

* Consider splitting the variables in half

\[X_1, X_2, \ldots, X_{n/2} \quad | \quad X_{n/2+1}, X_{n/2+2}, \ldots, X_n \]
Partial Assignments

* Consider splitting the variables in half

\[x_1, x_2, \ldots, x_{n/2}, x_{n/2+1}, x_{n/2+2}, \ldots, x_n \]

* For \(i \in \{0, 1, \ldots, n/2 \}, j \in \{0, 1, \ldots, n/2 \} \)

\[(x_1, x_2, \ldots, x_{n/2}, x_{n/2+1}, x_{n/2+2}, \ldots, x_n) \rightarrow (i, j) \]

is an assignment to \(\bar{x} \)

and \(i, j \) are partial assignments.
CNF-SAT via OV.

For each \(i \in \{0, 1\}^{n/2} \)

\[
A_i \leftarrow \text{Partial Assignment Gadget} \left(x_1, \ldots, x_{n/2}, i \right)
\]

For each \(j \in \{0, 1\}^{n/2} \)

\[
B_j \leftarrow \text{Partial Assignment Gadget} \left(x_{n/2+1}, \ldots, x_n, j \right)
\]

Return \(OV(A, B) \)
Vectors indexed by partial assignments

Each index $i \in \mathbb{0,1,2}^{n/2}$ corresponds to an assignment to $X_1, X_2, \ldots, X_{n/2} \leftarrow i$.

Each $j \in \mathbb{0,1,2}^{n/2}$ corresponds to assignment $X_{n/2+1}, X_{n/2+2}, \ldots, X_n \leftarrow j$.
Vector coordinates determined by satisfying clauses

\[\psi = C_1 \land C_2 \land \ldots \land C_m \]

\[A_i = \begin{cases} 0 & \text{if } x_1, x_2, \ldots, x_{n/2} \leftrightarrow i, \\ 1 & \text{satisfies clause } C_k, \\ \text{otherwise} & \end{cases} \]

\[C_k = \left(x_2 \lor x_9 \lor x_{n/2} \lor \neg x_{n-10} \lor \ldots \lor \neg x_7 \right) \]
Vector coordinates determined by satisfying clauses

\[y = C_1 \land C_2 \land \ldots \land C_m \]

\[B_{ij} = \begin{cases} 0 & \text{if } X_{i_{\text{start}}} \neq X_{i_{\text{end}}} \ldots \neq X_n \leftarrow j \\ 1 & \text{satisfies clause } C_k \\ 0 & \text{otherwise} \end{cases} \]

\[C_k = (x_2 \lor x_3 \lor x_n \lor \neg x_{n-10} \lor \ldots \lor \neg x_7) \]
Claim.

\[A_{ij} \cdot B_{ijn} = 0 \] if and only if

the assignment

\((x_1, x_2, \ldots, x_{n/2}, x_{n/2+1}, x_{n/2+2}, \ldots, x_n) \leftarrow (i, j)\)

satisfies the clause \(C_k\)
Claim.
\[A_i u \cdot B_j u = 0 \quad \text{if and only if} \]
the assignment
\[(x_1, x_2, \ldots, x_{n/2}, x_{n/2+1}, x_{n/2+2}, \ldots, x_n) \leftrightarrow (i, j) \]
satisfies the clause \(C_k \).

Corollary. There exists orthogonal \(A_i \) and \(B_j \)
if and only if \(\phi \) is satisfiable.
Orthogonal Vectors Problem (OV) Solves CNF-SAT

Reduction

\[2 \times 2^{n/2} \cdot \text{poly}(n, m) \]

+ \(T_{OV}(2^{n/2}) \)

Suppose \(T_{OV}(N) = N^{1.9} \),

\[\Rightarrow \text{CNF-SAT: } (2^{n/2})^{1.9} \leq 1.94^n \]
What did we show?

* New algorithmic approach for solving CNF-SAT. If CNF-SAT requires $\sim 2^n$ time, then OV requires $\sim N^2$ time.

* Hardness for polynomial-time.
What did we show?

* New algorithmic approach for solving CNF-SAT.

L, we only need to improve OV.

* Hardness for polynomial-time.

If CNF-SAT requires \(2^n\) time, then OV requires \(N^2\) time.

\[\text{Theorem.} \] If CNF-SAT requires \(2^n\) time, then Edit Distance requires \(\tilde{O}(n^2)\) time.