NP-Complete Graph Problems

Announcement: PSet 7 to be released Friday morning.

Q1 will have optional "early hand-in."

due Tues 4pm

promise to grade before end of Sp Brk,

solution set for entire PSet 7

will be released to all

couple of days after latest slip-day deadline)

regardless of early Q1 option.

Rest of PSet 7 has usual Thurs night

deadline.

Recall.

3SAT. Given boolean variables \(x_1, \ldots, x_n \)

forming literals \(x_i, \overline{x_i}, x_i \lor \overline{x_i}, \ldots, x_n, \overline{x_n} \)

and clauses \(C_1, \ldots, C_m \)

each is disjunction (Boolean OR)

of \(\leq 3 \) literals.

... does a truth assignment satisfying

all clauses exist?

IND SET. Given undirected graph \(G \)

pos. integer \(k \)

... does exist set \(S \) of \(k \) vertices,

st. every edge has \(\leq 1 \) endpoint

in \(S \)?

Claim. 3SAT \(\leq_p \) IND SET

"Given an algorithm that solves IND SET
we can make an efficient 3SAT algorithm.

Goal. ① Transform input of 3SAT \(\equiv \) input of IND SET.

② Transformation runs in poly time.
 (In fact, will be linear time.)

③ If 3SAT input has a satisfying truth assignment, the IND SET instance will have a k-element ind set.

④ If 3SAT input has no satisfying assign.
 the IND SET instance will have no k-element independent set.

\[
C_1: x_1 \lor x_2 \lor \overline{x_3} \\
C_2: \overline{x_1} \lor \overline{x_2} \lor x_4
\]
In general, the reduction takes

\[\begin{align*}
\text{Variables} & \quad \rightarrow \quad 2n \text{ verts} \\
\quad x_1, \ldots, x_n & \\
\text{Clauses} & \quad \rightarrow \quad \leq 3m \text{ verts} \\
\quad C_1, \ldots, C_m & \quad \rightarrow \quad \leq 3m \text{ verts}
\end{align*} \]

\[\begin{align*}
\text{edge set:} & \quad \text{Connect } (u_j, v_j) \quad \forall j \in [n] \\
\quad (w_{ij}, w_{ik}) & \quad \forall j \neq k \text{ s.t. } \{x_j, \overline{x_j}, x_k, \overline{x_k}\} \text{present in } C_i \\
\quad (w_{ij}, u_j) & \quad \text{if } x_j \text{ is in } C_i \\
\quad (w_{ij}, v_j) & \quad \text{if } \overline{x_j} \text{ is in } C_i
\end{align*} \]

Set target indep set size \(k \), to be \(n+m \).

Running time: \(O(2^n + 3m + n + 6m) = O(m+n) \)

CLIQUE: Given (undir.) graph \(G \) and \(k \in \mathbb{N} \), does \(G \) have a set of \(k \) vertices, \(S \), such that every two elements of \(S \) are connected by an edge?
Vertex Cover: Given G and k, does G have a set of vertices S, with k elements, that "covers" every edge? (S contains at least one endpoint of every edge)

IND-SET \leq_p CLIQUE

Given $G = (V,E)$ and k,

construct $\overline{G} = (V, \overline{E})$ and k.

S is independent in $G \iff$

S is clique in \overline{G}.