The Bellman-Ford Algorithm (§6.8)

Input: A graph $G = (V,E)$ (directed)

Edge costs c_{uv} for each $(uv) \in E$.

Requirement: No negative cost cycles.

First part of lecture: No cycles at all.

E.g., vertices are currencies ($\$, €, ¥, £) edge costs are \log(exchange rate).

Just add a constant to each edge cost to make them 0?

Run Dijkstra?
Bellman-Ford in DAGs (DAG-BF)

Assume vertex set \(V \) is in topological sort order.
\[V = \{ v_1, v_2, \ldots, v_n \} \]
Every \((v_i, v_j) \in E\) satisfies \(i < j \).

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \]

Takes \(O(m+n) \) time to find this ordering.

Assume \(s = v_1 \), \(t = v_n \).

PATHS \((s, v_j) = \begin{cases} \{s\} & \text{if } j = 1 \\ \bigcup_{\text{edges } e=(v_i, v_j)} \text{APPEND } \text{PATHS}(s, v_i) & \text{if } j > 1 \end{cases} \]

Every path from \(s \) to \(v_j \) is formed by appending some edge \(e=(v_i, v_j) \) to a path from \(s \) to some earlier vertex \(v_i \).

\[\text{MINCOST}(s, v_j) = \begin{cases} 0 & \text{if } j = 1 \\ \min \left\{ c_{ij} + \text{MINCOST}(s, v_i) : (v_i, v_j) \in E \right\} & \text{if } j > 1 \end{cases} \]

DAG-BF \((G, s, t)\):

Topologically sort \(G \). Assume \(V = \{ v_1, \ldots, v_n \} \), \(i < j \) \(\forall \) \((v_i, v_j) \in E\). \(s = v_1 \), \(t = v_n \).
\[M[i] = 0 \]

for \(j = 2, \ldots, n \):

\[M[j] = \min \{ c_{ij} + M[i] \mid (v_i, v_j) \in E \} \]

\(\text{treating min}(\emptyset) \) as \(\infty \)

end for

output \(M[n] \)

Time complexity of loop iteration \(j \)

\[= O(\# \text{edges into } j) + O(1) \]

Total time complexity

\[\sum_j O(\# \text{edges into } j) + \sum_j O(1) \]

\[= O(m) + O(n) = O(m + n) \]

\(\text{DAG- } \text{BF} \text{ is } O(m+n). \)

If \(G \) contains cycles:

- If \(\exists \) cycle of negative total cost reachable from \(s \), and can reach \(t \), then \(\not\exists \) min-cost path.

\[
\begin{array}{cccc}
\circ & \circ & \circ & \circ \\
0 & 1 & -1 & -1 \\
\end{array}
\]

- Assume no negative cost cycles.
The min-cost s.t. path has $\leq n$ vertices in it.

Convert G with cycles into $G \times [n]$ acyclic.

This construction reduces general case to DAG case.

BF runs in $O(mn + n^2)$