Reminder:
- G undirected connected graph
 $$G = (V, E, W)$$
 - V: vertices
 - E: edges
 - W: weights

- For this lecture assume all edge weights are > 0 and distinct.

Cut Lemma:
The min weight edge crossing any cut must be in the MST when all weights are distinct.

Cycle Lemma:
The max weight edge in any cycle must not be in the MST when all weights are distinct.

Prim's Algorithm:
Choose any vertex, V_i.
Initialize $T = (V_i, 0)$ no edges

While T is not a spanning tree:
- find the min weight edge from $V(T)$ to $V(G) \setminus V(T)$.
- insert that edge into T.

T gains one vertex and one edge.

Output T.

Proof of correctness: repeatedly apply Cut Lemma.
(Termination proof: $V(T)$ grows by one vertex each iteration, and cannot grow unboundedly.)
KRUSKAL'S ALGORITHM:

Sort edges by increasing weight: \(e_1, e_2, \ldots, e_m \).

Initialize \(E(T) = \emptyset, \ V(T) = V \).

For \(i = 1, 2, \ldots, m \):

- Insert \(e_i \) into \(T \) unless it creates a cycle.

Correctness: Every omitted edge is the max weight edge in some cycle.

But why does it output a spanning tree???

Loop invariant: At the end of the \(i \)-th loop iteration the graph

\[
(V, \ E(T) \cup \{e_{i+1}, e_{i+2}, \ldots, e_m\})
\]

is connected.

Induction step: Every edge we deleted, did not disconnect the graph b/c there was already a path in \(T \) connecting its endpoints.

Conclusion: \(T \) is a spanning tree, and the complement of its edge set is contained in the complement of the MST's edge set. Since all spanning trees have the same number of edges, \(T \) and the MST must coincide.