Announcements

1. Prelim 2 solutions posted on CMS. Re-grade requests due a week from now.
2. Problem Set 9 will be released Tuesday, 5/4, due Thursday, 5/13. This will be the last 4820 homework this spring.

Theorem. Let \(M_0, M_1 \) be two Turing machines such that \(L(M_0) \subseteq L(M_1) \). Then there is no Turing machine that accepts every \(x \) such that \(L(M_x) = L(M_0) \) or does not accept any \(x \) such that \(L(M_x) = L(M_1) \).

Proof. By contradiction. Suppose \(M \) accomplishes a and b. We need to show how to use \(M \) to solve co-HP.
Accordingly, given an input $x \# y$, we want to write down a description of a TM T such that:

- if M_x halts on y then $L(M_x) = L(M_1)$;
- if M_x doesn't halt on y then $L(M_x) = L(M_0)$.

Idea: M_x processes its input w while simultaneously, on an extra set of working tapes, running a universal TM on $x \# y$.

As long as the UTM $(x \# y)$ has not halted, M_x simulates M_0 processing w.

The moment UTM $(x \# y)$ halts, M_x switches to simulating M_1 processing w.

Pseudocode:

1. On Tape 2, write the string $x \# y$.
2. Set status = false ("status" indicates if UTM $(x \# y)$ has halted)
3. Copy input from Tape 1 to Tape 3.
4. while status = false
 run one transition of M_0 on Tape 3
 run one transition of UTM on Tape 2.
if UTN halted, set status = true
if M_0 accepted on Tape 3
 Enter accept state
5. Clear Tape 3, Make fresh copy of Tape 1.
6. repeat forever:
 run one transition of M_1 on Tape 3.
 if M_1 accepts, enter accept state.

Some observations
1. If M_x halts on y, then $UTN(x \# y)$ halts, so status is eventually set to "true"
 That means M_x accepts its input if and only if one of the following happens:
 - M_0 accepts input before UTN halts.
 - M_1 accepts input.
 That means $L(M_x)$ is the union of $L(M_1)$ with a subset of $L(M_0)$. But $L(M_0) \subseteq L(M_1)$
 so $L(M_x) = L(M_1)$.
2. If \(M_x \) doesn't halt on \(y \), then \(\text{UTM}(x \# y) \) loops, so the while-loop in step 4 never exits.
That means \(M_2 \) accepts its input if and only if \(M_0 \) accepts it.
\[\implies L(M_2) = L(M_0). \]

Now assume there exists a \(M \) that accepts all \(z \) s.t. \(L(M_2) = L(M_0) \) and doesn't accept any \(z \) s.t. \(L(M_2) \neq L(M_1) \).

Then \(\text{co-HP} \) would be r.e. because the following Turing machine, \(M' \), would have \(L(M') = \text{co-HP} \).

\(M' \) on input \(x \# y \), constructs a description of the Turing machine \(M_2 \) defined above, and then runs machine \(M \) on this description, \(z \).

We reached a contradiction, hence no \(M \) that satisfies (5) and (6) above.
Recall, a **language** is a set of finite strings. A **property** of languages is just a function from languages to \{TRUE, FALSE\}. A property is **non-trivial** if it is true for at least one r.e. language and false for at least one r.e. language.

Rice's Theorem. For any non-trivial property of r.e. languages, it is undecidable to test, given \(\mathcal{X} \), whether \(L(M_\mathcal{X}) \) has that property.

Proof. Assume WLOG \(\emptyset \) has the property. (Otherwise replace the property with its negation.) Let \(L(M_\emptyset) = \emptyset \). Let \(L(M_\mathcal{X}) \) be any r.e. language that doesn't satisfy the property. If the property is decidable then \(\exists \) a Turing machine \(M \) that accepts \(\mathcal{X} \) if and only if \(L(M_\mathcal{X}) \) has the property. In particular \(M \) accepts all \(x \) s.t. \(L(M_\mathcal{X}) = L(M_0) = \emptyset \).
and \(M \) doesn't accept any \(x \)

such that \(L(M_x) = L(M) \).

Since \(L(M_0) \neq \emptyset \subseteq L(M) \),

the theorem above tells us

there is no such \(M \).

Examples: The following properties of a

Turing machine \(M_x \) with description \(\omega \)

are undecidable.

1. \(M_x \) accepts the string "M".
2. \(M_x \) accepts at least one string.
3. \(M_x \) accepts more strings of

 length 4820 than of length 3110.
4. Every string accepted by \(M_x \)

 has at most 4820 1's in it.

Some of these are r.e., others are not.

"Undecidable" just means

\(\{ x \mid L(M_x) \text{ has the property} \} \)

is not recursive.

Rice's Theorem alone can't tell you

if that set is r.e.

The first theorem in this lecture

often can tell you about r.e., as well.
Approx Algorithms: coping with NP-Hard optimization problems (like minimum vertex cover) by designing algorithms that may produce suboptimal solutions, but they are probably not too much worse than optimal.

Example: Minimum Vertex Cover is the problem: given undirected $G = (V, E)$ find a vertex set $C \subseteq V$ that contains an endpoint of each edge and has as few vertices as possible.

This is NP-Hard.

Algorithm for approximate the min VC.

1. Initialize $\tilde{E} = E$ (edge set of G).
2. Initialize $C = \emptyset$
3. While \tilde{E} contains an edge (u, v):

 $C = C \cup \{u, v\}$

 Delete from \tilde{E} every edge having
4. output C.

Theorem. This outputs a vertex cover C, s.t.

$$|C| \leq 2 \cdot |C^*|$$

where C^* is a minimum vertex cover.

Proof. Let $e_1 = (u_1, v_1), \ldots, e_k = (u_k, v_k)$ be the edges chosen in the k iterations of line 3.

$$|C| = 2k.$$

Since C^* is a vertex cover, it contains an endpoint of e_i for $i = 1, \ldots, k$. The endpoints of these edges are all distinct. So

$$|C^*| \geq k.$$

Therefore

$$|C| \leq 2 \cdot |C^*|.$$

C is a vertex cover because an edge isn't deleted from E until it has an endpoint in C, and the algo doesn't until E is empty.