Universal Turing Machine

Announcements

1) Problem Set 8 will be due Thurs, Apr 29.
 No class those days.
3) Homework drop policy: one of your HW scores will be increased to perfect
 (unless AI deduction), we'll choose
 the HW where this increase is biggest.
4) It's safe to talk about Prelim 2
 with classmates now.

Recap: Turing machine (multi-tape) has:

- finite alphabets of symbols \(\Sigma \subseteq \Gamma \)
 \(\uparrow \) \(\uparrow \)
 \(\text{input} \) \(\text{work} \)

\(\omega, \eta \) are symbols in \(\Gamma \setminus \Sigma \).

- finite set of states \(Q \)
- finite set of infinite tapes for storing symbols.
- transition function

\[s : Q \times \Pi^t \rightarrow Q \times \Pi^t \times \{-1,0,1\}^t \]
The MTM operates as follows:

- Initialize in state \(s_0 \) with each read/write head at left end of one of the \(t \) tapes, reading \(1 \).
 - First tape contains input, \(X \).
 - (Contents: \(1X \ldots \ldots \))
 - All other tapes \(\ldots \ldots \).

- Each step: read \(t \)-tuple of symbols at current positions.
 - Consult \(G \) to get
 - new state
 - symbol to write at current position on each tape
 - direction to move each head.

- State set \(G \) has two special states, \(\alpha \) and \(\omega \).
 - If machine ever reaches...
 - state \(\alpha \): halt and accept input \(X \).
 - state \(\omega \): halt and reject \(X \).

A MTM is called total if it always either accepts or rejects its input. The other alternative is it could run forever ("loop").
If M is a Turing machine,

$$L(M) = \{ x \in \Sigma^* \mid M \text{ accepts } x \}$$

A subset $L \subseteq \Sigma^*$ is called:

1. Recursively enumerable (r.e.) if

 \exists Turing machine M such that $L = L(M)$.

2. Recursive if \exists Turing machine M

 which is total and $L = L(M)$.

In other words:

- L is recursive means \exists an algorithm that
dakes $x \in \Sigma^*$, is guaranteed to run
in finite time, and tells whether $x \in L$.

- L is r.e. means \exists an algorithm

 that will eventually say $x \in L$ if

 that's true, will never say $x \in L$

 if that's false, but may run forever

 and say nothing.

Example: Halting problem. Given a program
(e.g. in Java) and an input, decide
if the program terminates on that input.
Pseudocode for Turing machines

[4820 Spring 2021 conventions, not standardized math.]

A piece of pseudocode representing a TM may use a finite number of variables, each of which is either:

1. A single element of \(\Gamma \)
2. A non-negative integer.

Control flow: allows if-then-else, while loops, repeat-until, for \(i \) in range \((a,b)\), for \(i = 0,1,2, \ldots \) (infinite loop).

Conditionals: test integers for \(=, <, > \)

Test \(\Gamma \) elements for \(= \)

Assignment statements: allowed

Arithmetic: modify integers by \(+1, -1 \).

Reading data: can access symbol at current position on any tape, or move a tape head left/right.

Calling functions: allowed but only bounded-depth stack.

Arrays disallowed.

Pointers disallowed.
PRIME_LENGTH (x): // test if length of x is prime
 // One tape
 Move right
 if reading 1: // x has length 0
 reject x
 Move right
 if reading 1: // x has length 1
 reject
 // Main loop: test for divisors
 length = 0
 repeat { Move right } until reading 1
 Move left
 repeat d
 Move left
 length = length + 1
 3 until reading 1
 more right.
 for d = 2, 3, ..., length-1:
 count 1 = 0
 count 2 = 0
 while count 1 < length:
 count 1 = count 1 + 1
 count 2 = count 2 + 1
 Compute length of x
 Compute length % d
if count2 = d:
 count2 = 0

// count1 = length, count2 = length mod d
if count2 = 0:
 reject x

// reached end of for-loop, no divisor found
accept x.

Interpreting pseudocode as a MTM.

State set: \(Q = \{ \text{program lines} \} \times \Gamma^v \)

where \(v \) denotes number of \(\Gamma \)-valued variables in the program.

Tapes: Any tapes mentioned in the program
+ one additional tape for each integer variable.

The int variables are stored in unary.
(\(k \) stored as \(1^k \)).