Announcement.

Problem Set 2, Question 2.
You can assume log entries have
distinct timestamps. However \(u_i \)'s, \(v_i \)'s
(or even \(u_i, v_i \) pairs) can occur
repeatedly.
Also don’t assume log entries are
in any particular order.

DYNAMIC PROGRAMMING (Chapter 6)

Weighted Interval Scheduling, Input consists of \(n \) requests or jobs.
Each has three properties:
- start time \(s_i \);
- finish time \(f_i \);
- value \(v_i \geq 0 \) if selected.

Goal Select a set of jobs that is
conflict-free (if \(s_j \) are selected then
\([s_i,f_i]\) is disjoint from \([s_j,f_j]\)) and
has max total value subject to conflict-free.
EFT no longer works: \[\begin{array}{c}
& v_2 = 3 \\
v_1 = 1 & v_3 = 1
\end{array} \]
optimal set is job 2 only.
EFT picks jobs 1 and 3.

Greedy by value also doesn’t work: \[\begin{array}{c}
& v_2 = 3 \\
v_1 = 2 & v_3 = 2
\end{array} \]
optimal set is jobs 1 and 3.
Greedy by value gets only job 2.

In fact nobody knows a greedy algorithm that solves every instance of WJS correctly.
There probably isn’t one, but it depends on how you define a greedy algorithm, which is still not standardized.

Plan: Think more carefully and systematically about the set of feasible solutions and how to optimize over it.

Structure Lemma for Conflict-Free Request Sets
Assume requests are sorted such that \(f_1 \leq f_2 \leq \ldots \leq f_n \). Let \(p(n) \) denote
the highest numbered request that finishes before \(s_n \).

Every conflict-free subset of \(\{1, 2, \ldots, n\} \) is either:

\(a \) a conflict-free subset of \(\{1, 2, \ldots, n-1\} \)

\(b \) \(s \cup \{n\} \) where \(s \) is a conflict-free subset of \(\{1, \ldots, \rho(n)\} \)

Proof sketch. The lemma statement encodes the obvious fact that set of requests either contains \(n \) or it doesn’t. And if it contains \(n \) and is conflict-free, then it can’t contain any interval whose finish time is in \([s_n, f_n] \).

Recursive algorithm for computing the maximum value of a conflict-free set.

(Not the contents of the set.)

\[
\text{Compute-Opt}(n): \quad \text{// Compute max value of a conflict-free subset of \(\{1, \ldots, n\} \).}
\]

\[
\text{if } n = 0 \quad \text{return } 0
\]

\[
\text{else}
\]

\[
\text{Find } \rho(n).
\]

\[
\text{return } \max \{ \text{Compute-Opt}(n-1), \mu + \text{Compute-Opt}(\rho(n)) \}
\]
Correctness of Compute-Opt(n) follows by induction on n. Ind hyp is that the function correctly computes the max value of a conflict-free subset of \(\{1, 2, \ldots, n\} \).

Base case \(n=0 \): the only subset of the empty set is empty and has value 0.

Induction step: Structure lemma implies that max-value conflict-free subset is either

(a) the max value conf-free subset of \(\{1, \ldots, n-1\} \); or
(b) \(S \cup \{n\} \) where \(S \) is the max value conf-free subset of \(\{1, \ldots, p(n)\} \).

By ind hyp, max value achievable in case (a) is Compute-Opt(n-1). And max value achievable in case (b) is \(v_n + \text{Compute-Opt}(p(n)) \).

\[\therefore \text{Compute-Opt}(n) \text{ outputs the right answer.} \]
Struct Lemma says: A conf-free subset either picks \([s_5, f_5]\) together with a subset of the first 3 requests, or it omits \([s_5, f_5]\).

If you pick \([s_5, f_5]\), you get 7 plus the value of the other jobs picked. Otherwise, you get the value of whatever subset of the first 4 jobs you pick.
Running the pseudo-code in blue above would generate a set of recursive calls to `compute-opt(...)` modeled by the tree above.

Watch out! The tree can get exponentially big. To make the algorithm efficient we'll use "memoization." Store results of previous `compute-opt` calls in a table, `M[]`.

```
Compute-Opt(n):
if M[n] is non-null, return M[n].
else // This is the first time we've been asked to solve Compute-Opt(n).
    if n = 0
        set M[n] = 0
    else
        compute p(n) = max { i | f_i < s_n }
        set M[n] = max { Compute-Opt(n-1), V_n + Compute-Opt(p(n)) }
    return M[n].
```
Analysis of running time:
Excluding time spent in recursive calls, Compute-Opt does $O(n)$ work.

Furthermore, Compute-Opt(i) does this work at most once, for each $i = 0, 1, 2, \ldots, n$.

Running time, in total, is

\[
\sum_{i=0}^{n} \text{ (time spent on Compute-Opt(i))} \\
\leq n \cdot O(n) \\
= O(n^2).
\]

Faster implementation: pre-compute $p(i)$ for each i. This preprocessing step happens before we ever call Compute-Opt.

The pre-processing to compute $p(1), p(2), \ldots, p(n)$ can be implemented to run in $O(n)$.

Then Compute-Opt does $O(1)$ work outside recursive calls, so the whole algorithm becomes $O(n)$.