15 Feb 2021 Greedy Interval Scheduling

Announcements:
1) TA office hours start this week.
 See schedule on website.
 Click a calendar entry for Zoom link
 and Google Doc link. Use Google Doc
 to indicate what you’d like to ask about.
 Some office hours will be in person.
 Rooms have limited capacity; maintain
 safe distance while waiting in line.

2) Homework partner matching: if you
 requested homework partners you should
 have gotten email from Ruiqi Zhang
 rz297 last night.

 If you didn’t get a partner yet, e.g.:
 because you recently enrolled,
 email Ruiqi: rz297@cornell.edu.

 If you aren’t on CMS or Canvas yet,
 email me directly: robert.kleinberg@cornell.edu.
REDUCTIONS
To reduce problem A to problem B means:

to use an algorithm for B
as a step in running an
calgorithms to solve A.

A common template for reducing A to B is to design two algorithms

"Encoding": takes the input to A
and transforms it into an input for B

"Decoding": takes solution to B
and transforms into a solution to A.

You are always allowed (encouraged!) to solve 4820 problems by
reducing them to algorithms that
were taught in
- Lectures
- Assigned readings
- Prerequisite courses
- Already solved homework
(same or previous assignment)
When you reduce A to B...

1. You can incorporate algorithm B as a single line of pseudocode.
2. Remember to account for the time it takes to run algorithm B.
3. In the correctness proof for A you are allowed to assume B is correct.

Interval Scheduling

Given a set of n time intervals ("jobs") $[s_i, f_i]$ $s_i =$ start time $f_i =$ finish time $s_i \leq f_i$ $\forall i$

find a non-conflicting subset with as many intervals as possible.

Def: S is non-conflicting if $\forall i \neq j \in S$
either $f_i < s_j$ or $f_j < s_i$.

Example. Blue and red sets are non-conflicting. Blue set is optimal.
Examples of greedy algorithms

1. Shortest Job First:
 - Pick the job that minimizes $f_i - s_i$.
 - Add that to S and remove all conflicting jobs.
 - Recurse on remaining job set.

2. Earliest start time

3. Earliest finish time - The only correct and efficient algo on this list.

4. Fewest conflicts

5. Latest finish time

 - Correct, but exponential time.

Running time analysis of Earliest Finish Time:
1. Must sort all n intervals by finish time.
 - $O(n \log n)$
2. The remaining logic in EFT can be implemented in linear time.

\[
S = \{ [s_i, f_i] \},
\]
\[
k = 1
\]

for \(i = 2, 3, \ldots, n \):

\[
\text{if } s_i > f_k:
\]

// \(k \) = highest numbered job in \(S \) so far.

\[
S = S \cup \{ [s_i, f_i] \}
\]

\[
k = i
\]

end for

output \(S \)

Why is the algorithm correct?

How can we prove its output is a maximum size non-conflicting set for every possible input instance?

Obs. 1. \(S \) is a non-conflicting set.

Proof: Induction on \# loop iterations.

We only add an interval to \(S \) if its start time is after latest finish time in \(S \).
Proper proof would use the induct hyp: after m loop iterations, variable \(k \) stores the index of the latest finishing job in \(S \), and all jobs in \(S \) are non-conflicting.

Obs. 2. Every interval in the input set contains one of the times.

\[
T = \bigcup \{ f_i \mid \text{interval } i \text{ belongs to } S \}
\]

E.g. in the example above \(T \) is a set of 3 time steps represented by 3 vertical dotted lines.

Proof. Intervals inserted into \(S \) contain \(f_i \).

Intervals that we skipped were of the form \([s_i, f_i]\) with \(s_i \leq f_k \) because we skipped \(i \).

and \(f_i > f_k \) because we started by increasing finish time.

So that means \([s_i, f_i]\) contains \(f_k \), which is in \(T \).

Obs. 2 \(\Rightarrow \) size of \(T \) is an upper bound on size of non-conflicting sets.

But \(|S| = |T| \), so \(|S| \) is as large as it could be.