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Given an undirected graph G = (V,E). A perfect matching M ⊂ E is a subset of edges such that
there is exactly one edge in M adjacent to any node v ∈ V . Note that G doesn’t have to be bipartite.
The Perfect Matching problem is to decide if the input graph G has a perfect matching. We have
seen an algorithm solving this problem in bipartite graphs (using flows). A more complex, but still
polynomial time, algorithm can solve this problem in general graphs also. Here we show that a SAT
solver can solve this, as a first demonstration of the power of SAT.

Theorem. Perfect Matching ≤ SAT
Proof. Consider a graph G with n nodes V and m edges E. We will have a variable xe associated

with each edge e, with the ideas that xe = true will indicate that e is in the matching. This is m
variables.

The clauses will be used to make sure our selected set of edges is a perfect matching. We add a
clause for every vertex v that guarantees that at least one edge adjacent to v is picked:

∨e adj v xe for each node v ∈ V (1)

Next we have to make sure only one edge is picked adjacent to every node. To do this, consider any
pair of edges e and f that share a node. We add for al such pairs the clause

x̄e ∨ x̄f for each pair of adjacent edes e and f (2)

Now let Φ denote the formula consisting of the clauses (1) and (2) above. Note that (1) has n
clauses, one for every node v ∈ V , while (2) has at most O(nm), as each of the m edges can share a
node with at most 2(n− 1) other edges, n− 1 at most at either end of the edge. So the formula Φ has
at most O(mn) clauses, which is polynomial in n and m.

Claim. The formula Φ is satisfiable if and only if G has a perfect matching.
Proof. Suppose G has a perfect matching M . We can set xe = true for all edges e ∈ M and false

for all other edges. This truth setting will satisfy (1) as M has an edge adjacent to every node, and it
satisfies (2) as it has only one edge adjacent to any node.

Similarly, if a truth assignment satisfies Φ, it most have at least one edge adjacent to every node
due to (1), and cannot have two edges adjacent to any node, due to (2).

Next we show that SAT can also be used to solve the Independent Set problem. Recall that the
Independent Set problem is given by an undirected graph and an integer k, and asks if G has an
independent set of size k.

Theorem. Independent Set ≤ SAT
Proof. Consider a graph G with n nodes V and m edges E. We will have a variable xv associated

with each node v, with the idea that xv = true will indicate that v is in the independent set. This is n
variables. We can add a clause for each edge e = (v, w)

x̄v ∨ x̄w for each edge (v, w) ∈ E (3)

which guarantees at most one of the two adjacent nodes is in the independent set. We summarize this
as the following claim.

Claim. A truth assignment satisfies the clauses (3) if and only if the set I = {v : xv = true} is
independent.



Next we need to make sure to that the independent set is size k. We can think of this as a matching
problem, matching the nodes V picked by the independent set to a set of k nodes {1, . . . , k}, as suggested
by the figure below.
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Figure 1: Matching Independent Set to nodes 1, 2, . . . , k.

Add new variables yvi with the idea that yvi = true if v is the ith member of the independent set.
Clauses will be analogous to the matching problem above. The first set guaranteeing that we pick an
ith node for each i = 1, 2, . . . , k.

∨v yvi for each node 1 ≤ i ≤ k (4)

The next set of clauses makes sure each node v is only counted at most once. For each i 6= j and
each v ∈ V we add

ȳvi ∨ ȳvj for each node v and i 6= j (5)

Finally, we need to make sure that only nodes in the independent set are picked. For each node v
and each i we add

xv ∨ ȳvi for each node v and each i (6)

Claim. There is a truth assignment satisfying all the above clauses if and only if the graph G has
an independent set of size k.

Proof. To prove one direction, let I be an independent set of size k. We set xv = true for all nodes
v ∈ I and false for all other nodes. Now number the nodes in I, and set yvi = true for the ith node,
and all other y variables to false. We claim that this truth assignment satisfies all clauses above.

To see the opposite, consider a truth assignment satisfying all clauses. Let I = {v : xv = true}. By
the claim above I is a independent set. We need to claim that |I| ≥ k. Note that it can actually be
larger than size k, as we didn’t include clauses guaranteeing that at most one edge (v, i) is selected for
each node v.

For each i = 1, . . . , k there must be at least one variable yvi that is true by (4). This node v must
be in the independent set by (6), and each i must pick a different node v (or set of nodes) in the
independent set due to (5), so the independent set is of size at least k.


