Dijkstra’s Algorithm

Exercise 2 asks for an algorithm to find a path of maximum bottleneck capacity in a flow graph G with source s, sink t, and positive edge capacities $c : E \rightarrow \mathbb{N} \setminus \{0\}$. A hint is provided suggesting that you use a modified version of Dijkstra’s algorithm. The purpose of this note is to review Dijkstra’s algorithm and its proof of correctness. You may use this as a template on which to model your solution if you wish.

Dijkstra’s algorithm solves the single-source shortest path problem for directed graphs with nonnegative edge weights. Given a directed graph $G = (V,E)$ with edge weights $d : E \rightarrow \mathbb{N}$ and a source $s \in V$, we would like to find a shortest path from s to every other $v \in V$, where shortest means the sum of the weights of the edges along the path is minimum among all paths from s to v.

For $X \subseteq V$, call a path an X-path if all nodes on the path except possibly the last lie in X. That is, s_0, \ldots, s_n is an X-path if s_0, \ldots, s_{n-1} lie in X. The last node s_n may be in X or not. Dijkstra’s algorithm is greedy, building up a set $X \subseteq V$ inductively. It maintains several data items as it executes:

- A set X of nodes, initially empty. These are the nodes v for which we have already found a shortest path from s to v.
- A priority queue Q containing some nodes in $V \setminus X$. These are the candidates for next inclusion in X. The queue is a min-queue, which means that the item with the least priority value is extracted.
- For each $v \in Q \cup X$, an X-path $p(v)$ from s to v. The priority of $v \in Q$ is the weight of $p(v)$, which we denote by $D(v)$. If $v \neq s$ and $P(v)$ is the immediate predecessor of v on $p(v)$, then $p(v)$ consists of $p(P(v))$ followed by the edge $(P(v), v)$. Thus v need only remember its immediate predecessor $P(v)$, as $p(v)$ can be reconstructed by following the sequence of back-pointers $P(\cdot)$ from v back to s. Moreover, $D(v) = D(P(v)) + d(P(v), v)$.

The following invariants are maintained by the algorithm:

(i) $Q \cup X = \{v \mid$ there exists an X-path from s to $v\}$.
(ii) For $v \in Q$, $p(v)$ is a shortest X-path from s to v.
(iii) For $v \in X$, $p(v)$ is a shortest path from s to v.

The algorithm proceeds as follows.

1. Set $X := \emptyset$ and $D(s) := 0$. Insert s in Q with priority $D(s)$.
2. Repeat the following until Q becomes empty. Extract the element v from Q with the minimum $D(v)$ value and add v to X. For each edge $(v, w) \in E$,
 (a) If $w \in X$, do not do anything. Go on to the next edge.
 (b) If $w \in Q$ and $D(v) + d(v, w) < D(w)$, reset $P(w) := v$ and reset $D(w) := D(v) + d(v, w)$. (This will cause the priority of w in the priority queue Q to decrease, perhaps requiring some restructuring of Q; we discuss this below.) Otherwise just go on to the next edge.
 (c) If $w \not\in Q \cup X$, set $D(w) := D(v) + d(v, w)$, set $P(w) := v$, and insert w in Q with priority $D(w)$.

To prove correctness, we first show that all the invariants are true after initialization (step 1) and are preserved by the loop (step 2).

After step 1, (i) holds because \(Q \cup X = \{ s \} \) and we can take \(p(s) \) to be the 0-length path consisting of just the node \(s \). Moreover, since \(X = \emptyset \), this is the only \(X \)-path at that point. Property (ii) holds because all edge weights are nonnegative, and \(D(s) = 0 \), which is as small as possible. Property (iii) holds vacuously.

Now suppose the invariants hold before one execution of the loop body. Say \(v \) is the node extracted from \(Q \) and added to \(X \) in that iteration. The new nodes with an \(X \)-path from \(s \) are all those reachable in one step from \(v \) and not already in \(Q \cup X \), and those are all added to \(Q \) in 2(c), so (i) is preserved.

For (ii), if \(w \in Q \) prior to the execution of the loop body, then the only possibility for a new shortest \(X \)-path to \(w \) afterward are through \(v \). Step 2(b) checks for this eventuality and updates \(P(w) \) and \(D(w) \) accordingly if necessary. If \(w \not\in Q \) prior to the execution of the loop body, then by (i) the only \(X \)-paths to \(w \) after the execution of the loop are through \(v \), and step 2(c) sets \(P(w) \) and \(D(w) \) accordingly.

Finally (iii). Just before the execution of the loop body, any path \(q \) starting from \(s \) and ending at \(v \) must leave \(X \) for the first time. Thus \(q \) has a prefix \(q' \) that is an \(X \)-path. Say the last two nodes on \(q' \) are \(x \in X \) and \(y \not\in X \). By invariant (i), \(y \in Q \). Since \(v \) was the node extracted from \(Q \), we must have \(D(v) \leq D(y) \). The weight of \(q' \) is at least \(D(y) \) by (ii), and the weight of \(q \) is at least the weight of \(q' \), therefore the weight of \(q \) is at least \(D(v) \), the weight of \(p(v) \). As \(q \) was arbitrary, \(p(v) \) is a shortest path from \(s \) to \(v \).

Using a heap-based priority queue, the algorithm can be implemented in \(O((m+n) \log n) \) time. Step 1 takes constant time. Each iteration of the loop in 2 requires \(O(\log n) \) time to extract the min priority node \(v \) from \(Q \), or \(O(n \log n) \) time over the entire algorithm, and \(O(\log n) \) time for each edge \((v, w) \) to add \(w \) to \(Q \) in 2(c) or to readjust the queue in 2(b) if the decrease of priority causes a violation of heap order, or \(O(m \log n) \) time over the entire algorithm. All other operations are constant time per node or edge.