
CS 4820, Summer 2010 Out: August 06. Due: Tuesday, August 10, 8:30am

Homework 9
Reading: Sections 8.1–8.7 from the textbook.

Problem 1. Suppose you’re acting as a consultant for the Port Authority of a small Pacific Rim nation.
They’re currently doing a multi-billion dollar business per year, and their revenue is constrained almost
entirely by the rate at which they can unload ships that arrive in the port.

Handling hazardous materials adds additional complexity to what is, for them, an already complicated
task. Suppose a convoy of ships arrives in the morning and delivers a total of n canisters (denoted by set C,
hence |C| = n), each containing a different kind of hazardous material. Standing on the dock is a set of m
trucks (denoted by T , hence |T | = m), each of which can hold up to ` containers.

Here are two related problems, which arise from different types of constraints that might be placed on
the handling of hazardous materials. For each of the two problems, give one of the following two answers:

• A polynomial-time algorithm to solve it; or

• A proof that it is NP-complete.

(a) For each canister i, there is a specified subset Ti of the trucks in which it may be safely carried. Is there
a way to load all n canisters into the m trucks so that no truck is overloaded, and each container goes
in a truck that is allowed to carry it?

(b) In this different version of the problem, any canister can be placed in any truck; however, there are
certain pairs of canisters that cannot be placed together in the same truck. (The chemicals they contain
may react explosively if brought into contact.) Is there a way to load all n canisters into the m trucks
so that no truck is overloaded, and no two canisters are placed in the same truck when they are not
supposed to be?

Problem 2. Suppose you’ve just compiled the final version of your sweet new computer game, “Ninja
Monkeys vs. Pirate Penguins: The Final Encounter”. Despite its inherent awesomeness, the number of
people who have actually downloaded your game is disappointingly small. Those who have played it give
rave reviews, but most people still haven’t heard of it.

To increase the game’s visibility, you decide to do a little viral marketing. Your goal is to make sure
everyone on campus has either tried the game themselves, or at least is friends with someone else who has.
Obviously you could do this by convincing everyone on campus to try the game, but this would take forever.
The question is, can you meet your goal while only taking the time to convince k people to try NMvPP (we’ll
go with the slightly optimistic assumption that anyone can be convinced to play the game eventually)?

We can model the Viral Marketing problem more formally as follows. Given a graph G = (V,E) (in
which nodes represent people and edges connect friends) and a positive integer k, we would like to know
whether there a set of nodes S ⊆ V containing at most k nodes such that every node x ∈ V is either itself
in S or is adjacent to at least one node in S (or both). Such a set S will be called a Viral Set.

(a) Give an example of a graph G and a positive integer k such that G has a Viral Set of size k, but does
not have an Vertex Cover of size k.

(b) Prove that the Viral Marketing problem is NP-Complete. Note that the input to the Viral-Set problem
is 〈G, k〉 and the input is a “yes” instance if there is a Viral-Set of size at most k and a “no” instance
otherwise.

Problem 3. The mapping of genomes involves a large array of difficult computational problems. At the
most basic level, each of an organism’s chromosomes can be viewed as an extremely long string (generally
containing millions of symbols) over the four letter alphabet {A, C,G, T}). One family of approaches to

Homework 9 – Page 1

genome mapping is to generate a large number of short, overlapping snippets from a chromosome, and then
to infer the full long string representing the chromosome from this set of overlapping substrings.

While we won’t go into these string assembly problems in full details, here’s a simplified problem that
suggests some of the computational difficulty one encounters in this area. Suppose, we have a set S =
{s1, s2, . . . , sn} of short DNA strings over a q-letter alphabet Σ (that is |Σ| = q); and each string si has
length 2` for some ` ≥ 1. We also have a library of additional strings T = {t1, t2, . . . , tm} over the same
alphabet; each of these also has length 2`. In trying to assess whether the string sb might come directly
after the string sa in chromosome, we will look to see whether the library T contains a string tk so that the
first ` symbols in tk are equal to the last ` symbols in sa, and the last ` symbols in tk are equal to the first `
symbols in sb. If this is possible, we will say that tk corroborates the pair (sa, sb). (In other words, tk could
be a snippet of DNA that straddled the region in which sb directly followed sa.)

Now, we would like to concatenate all the strings in S in some order, one after the other with no overlaps,
so that each consecutive pair is corroborated by some string in the library T . That is, we would like to order
the strings in S as si1 , si2 , . . . , sin

, where i1, i2, . . . , in is a permutation of {1, 2, . . . , n}, so that for each
j = 1, 2, . . . , n−1, there is a string tk that corroborates the pair (sij

, sij+1). (The same string tk can be used
for more than one consecutive pair in the concatenation.) If this is possible, we will say that the set S has
a perfect assembly with respect to T .

Given set S and T , the Perfect Assembly Problem asks: Does S have a perfect assembly with respect to
T? Prove that Perfect Assembly is NP-complete.

Example: Suppose the alphabet is {A, C,G, T} (the four bases), the set S = {AG, TC, TA}, and the
set T = {AC, CA, GC,GT} (so each string has length 2` = 2.) Than the answer to this instance of Perfect
Assembly is yes: We can concatenate the three strings in S in the order TCAGTA (so si1 = s2, si2 = s1,
and si3 = s3). In this order, the pair (si1 , si2) is corroborated by the string CA in the library T , and the
pair (si2 , si3) is corroborated by the string GT in the library T .

Homework 9 – Page 2

