Computation of $p(j)$ in Weighted Interval Scheduling

Clarification from 2010-Jul-12 lecture

Setting: We are given n jobs, each of which has a start time and finish time, $[\text{starttime}(i), \text{finishtime}(i)]$. Let us define

$$p(j) = \max_i \{\text{finishtime}(i) \leq \text{starttime}(j)\}.$$

Below, we give a $O(n \log n)$ time algorithm for finding $p(\cdot)$ values.

We sort the jobs according to the start times and finish times both (in two separate lists of course). We go down the finish-time list, and assign $p(j)$ values for the jobs in the start-time list. The idea is to keep two separate pointers, and keep them in such a way that we can assign the $p(\cdot)$ value of the job of second pointer equal to the job of the first pointer. Details below.

Let $\text{starttime}(i)$ denote the start time of job i, and $\text{finishtime}(i)$ denote the finish time of job i.

Sort the jobs according to start times. Let s_1 be the first job (with smallest start time), s_2 be the second job and so on. Therefore, $\text{starttime}(s_1) \leq \text{starttime}(s_2) \leq \cdots \leq \text{starttime}(s_n)$.

Sort the jobs according to finish times. Let f_1 be the first job (with smallest finish time), f_2 be the second job and so on. Therefore, $\text{finishtime}(f_1) \leq \text{finishtime}(f_2) \leq \cdots \leq \text{finishtime}(f_n)$.

Let us also assume we have a job called 0 with finish time and start time both equal to 0. So, $s_0 = 0$, and $f_0 = 0$ in the above sorted order.

\begin{verbatim}
1 i = 1, j = 1
2 while (i <= n && j <= n) {
3 if (\text{finishtime}(f_i) \leq \text{startime}(s_j)) {
4 i = i + 1
5 } else if (\text{finishtime}(f_i) > \text{startime}(s_j)) {
6 \text{p}(s_j) \leftarrow f_{i-1} // if i - 1 = 0, then f_{i-1} = 0 by the assumption of an extra job above.
7 j = j + 1
8 }
9 }
\end{verbatim}

Lemma 1. The above procedure assigns the $p(k)$ values correctly for $k \in \{1, 2, ..., n\}$.

Proof. Let us focus on a job k. Let us say it occurs at index j' in the sorted start-time list, that is $s_{j'} = k$. There are two cases to analyze. If $p(s_{j'}) = 0$, then we can easily see that the assigned value is correct. This is because if $p(s_{j'})$ is assigned 0, then i has not been increased yet (and $p(s_{j'})$ was assigned f_0 which is equal to 0), and $\text{finishtime}(f_i) > \text{startime}(s_{j'})$ (the condition in the else if part of the loop). In this case, $p(s_{j'})$ must be 0.

If $p(s_{j'})$ is assigned some value other than 0, it must be $f_{i'-1}$ for some $i' > 1$. At the time of assigning the value (let us call that time t'), i must have been equal to i'. Consider the first instance of time when i was increased from $i' - 1$ to i'. Call this time t (note that $t \leq t'$). At time t, $\text{finishtime}(f_{i'-1})$ must have been less than or equal to $\text{startime}(s_{j'})$ (where j'' is the value of j at time t). We also note that $j'' \leq j'$ since j is an increasing index. Therefore, we have

$$\text{finishtime}(f_{i'-1}) \leq \text{startime}(s_{j''}) \leq \text{startime}(s_{j'})$$,

where the first inequality follows because i was increased at time t from $i' - 1$ to i' and the second inequality holds because the value of j at time t can only be at most the value of j at time t' and jobs in the s-list are

Computation of $p(j)$ in Weighted Interval Scheduling – Page 1
sorted by start time. Also notice that when \(j' \) was assigned \(p(j') \) equal to \(i' - 1 \) in the “else if” condition, we had

\[
\text{finish}(f_{i'}) > \text{start}(s_{j'}).
\]

Combining the two relations above, we have

\[
\text{finish}(f_{i'-1}) \leq \text{start}(s_{j''}) \leq \text{start}(s_{j'}) < \text{finish}(f_i).
\]

It follows that the \(p(j') \) value is correct, since it must be the largest finish time which is still at most \(\text{start}(s_{j'}) \).

Lemma 2. The above procedure takes \(O(n) \) time.

Proof. In every iteration of the while loop, either \(i \) is incremented by 1, or \(j \) is incremented by 1. This can happen for at most \(2n \) iterations, since the maximum values of either of those in \(n \).