
CS 4820, Summer 2010

Computation of p(j) in Weighted Interval Scheduling
Clarification from 2010-Jul-12 lecture

Setting: We are given n jobs, each of which has a start time and finish time, [starttime(i), finishtime(i)).
Let us define

p(j) = max
i
{finishtime(i) ≤ starttime(j)}.

Below, we give a O(n log n) time algorithm for finding p(·) values.

We sort the jobs according to the start times and finish times both (in two separate lists of course). We
go down the finish-time list, and assign p(j) values for the jobs in the start-time list. The idea is to keep
two separate pointers, and keep them in such a way that we can assign the p(·) value of the job of second
pointer equal to the job of the first pointer. Details below.

1 Let starttime(i) denote the start time of job i, and finishtime(i) denote the
finish time of job i.

2 Sort the jobs according to start times. Let s1 be the first job (with
smallest start time), s2 be the second job and so on. Therefore ,
starttime(s1) ≤ starttime(s2) ≤ · · · ≤ starttime(sn).

3 Sort the jobs according to finish times. Let f1 be the first job (with
smallest finish time), f2 be the second job and so on. Therefore ,
finishtime(f1) ≤ finishtime(f2) ≤ · · · ≤ finishtime(fn).

4 Let us also assume we have a job called 0 with finish time and start time
both equal to 0. So, s0 = 0, and f0 = 0 in the above sorted order.

5 i = 1, j = 1
6 while (i ≤ n && j ≤ n) {
7 if (finishtime(fi) ≤ starttime(sj)) {
8 i← i + 1
9 }

10 else if (finishtime(fi) > starttime(sj)) {
11 p(sj)← fi−1 // if i− 1 = 0, then fi−1 = 0 by the assumption of an extra

job above.
12 j ← j + 1
13 }
14 }

Lemma 1. The above procedure assigns the p(k) values correctly for k ∈ {1, 2, ..., n}.

Proof. Let us focus on a job k. Let us say it occurs at index j′ in the sorted start-time list, that is sj′ = k.
There are two cases to analyze. If p(sj′) = 0, then we can easily see that the assigned value is correct. This
is because if p(sj′) is assigned 0, then i has not been increased yet (and p(sj′) was assigned f0 which is equal
to 0), and finishtime(f1) > starttime(sj′) (the condition in the else if part of the loop). In this case,
p(sj′) must be 0.

If p(sj′) is assigned some value other than 0, it must be fi′−1) for some i′ > 1. At the time of assigning
the value (let us call that time t′), i must have been equal to i′. Consider the first instance of time when i
was increased from i′ − 1 to i′. Call this time t (note that t ≤ t′). At time t, finishtime(fi′−1) must have
been less than or equal to starttime(sj′′) (where j′′ is the value of j at time t). We also note that j′′ ≤ j′

since j is an increasing index. Therefore, we have

finishtime(fi′−1) ≤ starttime(sj′′) ≤ starttime(sj′),

where the first inequality follows because i was increased at time t from i′−1 to i′ and the second inequality
holds because the value of j at time t can only be at most the value of j at time t′ and jobs in the s-list are

Computation of p(j) in Weighted Interval Scheduling – Page 1

sorted by start time. Also notice that when j′ was assigned p(j′) equal to i′ − 1 in the “else if” condition,
we had

finishtime(fi′) > starttime(sj′).

Combining the two relations above, we have

finishtime(fi′−1) ≤ starttime(sj′′) ≤ starttime(sj′) < finishtime(fi′).

It follows that the p(j′) value is correct, since it must be the largest finish time which is still at most
starttime(sj′).

Lemma 2. The above procedure takes O(n) time.

Proof. In every iteration of the while loop, either i is incremented by 1, or j is incremented by 1. This can
happen for at most 2n iterations, since the maximum values of either of those in n.

Computation of p(j) in Weighted Interval Scheduling – Page 2

