Notes from after-class discussion on homomorphisms -
these are pretty messy, sorry: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
f: A2-DA binary g: A-DA mary Signature: function symbols with actives
Ex. Group signature: ·: A2 > A (.) : A > A
1: A°→A
(A, •, -1, 1)
Rings: (A, +, *, 0, 1, -) (Z,+, *, 0, 1, -)
$(Z_{1},+,\cdot,0,1,-)$
Momeride: (A, o, 1) •: A2 > A 1: A0 > A
f: Doinang
homomorphism (A, fA, gA, cA) g= unany
(B CB CB)
$h: A \rightarrow B$ $h(x,x_2)$ $h(x_1) + h(x_2)$ $\forall x_1 > x_2 \in A$ $h(f^A(x_1 > x_2)) = f^B(h(x_1), h(x_2))$
$\forall x_{1}, x_{2} \in A h(f^{A}(x_{1}, x_{2})) = f(h(x_{1}), h(x_{2}))$
$\forall x \in A$ $h(g^A(x)) = g^B(h(x))$ $h(c^A) = c^B$
$h(c^A) = c^B$
$\Sigma = \{a,b\}$ $(\Sigma^*, \cdot, \epsilon)$ is a monorid.
$\Gamma = \{c,d\}$ $(\Gamma^*, \bullet, \epsilon)$ xyz
$h(a) = cd$ $\mathbf{z}(xyz = xyz)$
h(b) = ddc
h(ab) = cdddc
total h(ab) = h(a) · h(b)
$h(a_1 a_2 \cdots a_n) = h(a_1) \cdots h(a_n)$ $\xi x = x \xi = x$
$h(\varepsilon) = \varepsilon$

$$(2^{*}, \cdot, \epsilon) \times y \neq y \times$$

$$(N, t, 0) \quad (x + y) + 2 = x + (y + 2)$$

$$x + y = g + x \quad 0 + x = x + 0 = 0$$

$$1 \cdot 1 : 2^{*} \rightarrow N \quad | \text{ is monoid howernouplinions.}$$

$$1 \cdot 1 : (2^{*}, \cdot, \epsilon) \rightarrow (N, +, 0)$$

$$|xy| = |x| + |y|$$

$$|z| = 0$$

$$(xy)^{2} = xy^{2}$$

$$(M, \cdot, 1) \quad x \cdot 1 = 1 \cdot x = x$$

$$(A, 4 + \cdot, 0, 1, *) \quad AUB$$

$$A^{*} = UA^{*}$$

$$(2^{2^{*}}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad n^{20}$$

$$(Reg \geq_{i}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$(Reg \geq_{i}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$(Reg \geq_{i}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$(Reg \geq_{i}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$|x| = 1 \cdot x = x$$

$$(2^{2^{*}}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$(2^{2^{*}}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$(2^{2^{*}}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$(2^{2^{*}}, U, \cdot, \emptyset, \{\epsilon\}, *) \quad x^{2}$$

$$|x| = 1 \cdot x = x$$

$$|x|$$