Notes from after-class discussion on homomorphisms -
these are pretty messy, sorry :(

$$
h: A^{n} \rightarrow A \quad n \text {-arg } \quad c \in A \text { constant } \quad c: A^{0} \rightarrow A=0-a n
$$

$f: A^{2} \rightarrow A$ binary $g: A \rightarrow A$ mary signature: function Symbols with atities

Ex. Group signatinesi $: A^{2} \rightarrow A \quad(\cdot)^{-1}: A \rightarrow A$

$$
1: A^{0} \rightarrow A
$$

$$
(A, 0,-1,1)
$$

Rings: $(A,+, \cdots, 0,1,-)$

$$
(\mathbb{Z},+, 0,0,1,-)
$$

Momeids: $(A, \cdot 1) \quad: A^{2} \rightarrow A \quad 1: A^{0} \rightarrow A$
f: Aoinany
homomorplian

$$
\begin{aligned}
& \left(A, f^{A}, g^{A}, c^{A}\right) C_{C}=0 n s t a n t \\
& \left(B, f^{B}, g^{B}, c^{B}\right) \\
& h\left(x_{1} x_{2}\right) \\
& \left(f^{A}\left(x_{1}, x_{2}\right)\right)=f^{B}\left(h\left(x_{1}\right) \cdot h\left(x_{1}\right), h\left(x_{2}\right.\right. \\
& h\left(g^{A}(x)\right)=g^{B}(h(x)) \\
& h\left(c^{A}\right)=c^{B}
\end{aligned}
$$

$$
h: A \rightarrow B \quad h\left(x_{1} x_{2}\right) \quad h\left(x_{1}\right) \cdot h\left(x_{2}\right)
$$

$$
\forall x_{1}, x_{2} \in A \frac{h\left(x_{1} x_{2}\right)}{h\left(f^{A}\left(x_{1}, x_{2}\right)\right)}=f^{B}\left(h\left(x_{1}\right), h\left(x_{2}\right)\right)
$$

$$
\forall x \in A \quad h\left(g^{A}(x)\right)=g^{B}(h(x))
$$

$\Sigma=\{a, b\} \quad\left(\Sigma^{*}, \cdot, \varepsilon\right)$ is a monoid.

$$
\Gamma=\{c, d\} \quad\left(\Gamma^{*}, \cdot, \varepsilon\right)
$$

"xyz
$h(a)=c d$
(xy)z=x(yz). .
$h(b)=d d c$
$h(a b)=c d d d c$

$$
\begin{aligned}
& h\left(a_{1} a_{2} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right) \quad \varepsilon x=x \varepsilon=x \\
& h(\varepsilon)=\varepsilon
\end{aligned}
$$

$$
\begin{array}{ll}
\left(\Sigma^{*}, \cdot, \varepsilon\right) & x y \neq y x \\
(N, f, 0) & (x+y)+z=x+(y+z) \\
x+y=y+x & 0+x=x+0=0
\end{array}
$$

1.1: $\Sigma^{*} \rightarrow N$ is monoid honomouphiron.

$$
1 \cdot 1:\left(\Sigma^{*}, \cdot, \varepsilon\right) \longrightarrow\left(A_{1},+, 0\right)
$$

$$
|x y|=|x|+|y|
$$

$$
|\varepsilon|=0
$$

$$
\begin{array}{cc}
(x y)_{z}=x(y z) & A \cup B \\
(M, 0,1) & A \cdot B \\
\left(A, \frac{\varepsilon}{4}+, 0,1, *\right) & A^{*}=\bigcup_{n \geqslant 0} A^{n} \\
20,0,1 & x, x \\
\left(2^{\left.\Sigma^{*}, u, \cdot, \varnothing,\{\varepsilon\}, *\right)}\right.
\end{array}
$$

Kleene algebra.

$$
\{a\} \leq \Sigma^{*}
$$

UI

$$
\begin{gathered}
\left(\operatorname{Reg} \sum, v, \cdot, \phi,\{q\}, *\right) \rightarrow 0 \leftarrow \varepsilon \\
K \text { ceene algchos, } \\
A, B \leqslant X x X=\{(x, y) \mid x, y \in X\} \\
A \circ B=\{(x, y) \mid=\exists z(x, z) \in A,(z, y) \in B\}
\end{gathered}
$$

$$
\left(2^{x \times x}, 0,0, \phi,\{\{(x, x) \mid \times \in \in\}, *)^{n}\right.
$$

$$
R^{*}=\bigcup_{n \geqslant 0,} R^{n}
$$

is a.K.A.

